

XiangShan: Industrial-Competitive RISC-V CPUs in the Era of Open-Source Chips

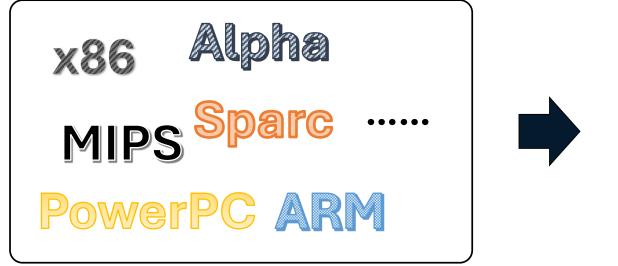
Yinan Xu 徐易难

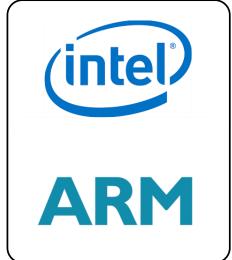
Institute of Computing Technology (ICT), Chinese Academy of Sciences (CAS)

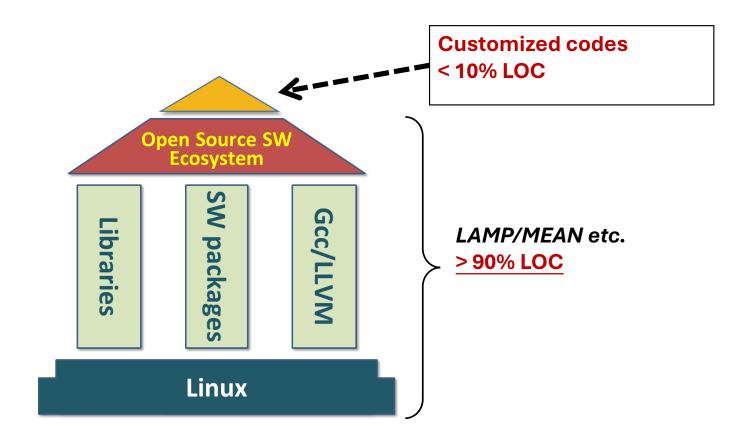
October 2025

Outline

- The Era of Open-Source Chips
- Open-Source Industrial-Competitive RISC-V Chips
- Open-Source Chip Design Tools
- Open-Source Development & Business Models
- Conclusions


Dozens of ISAs in the past 50 years


- Over the past half-century, dozens of instruction sets have appeared, all owned by private companies.
 - Most have disappeared as their companies merged or shut down.


Today: CPU Market Dominated by x86/ARM

- Over the past half-century, dozens of instruction sets have appeared, all owned by private companies.
 - Most have disappeared as their companies merged or shut down.
- Today, only x86 and ARM remain as mainstream instruction sets, each with its own ecosystem.

Open-Source Software Ecosystem



Mirror the success of the open-source software ecosystem?

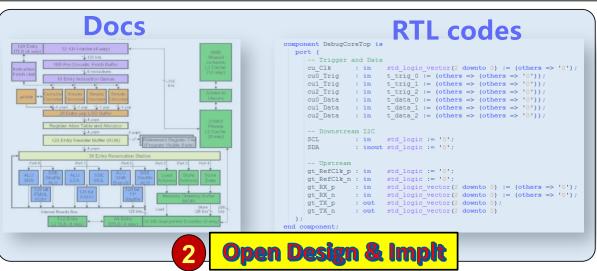
Open-Source Chip Ecosystem (OSCE)

To Lower the barrier of chip development

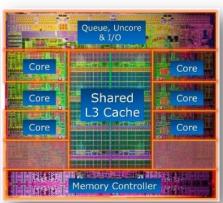
By saving the cost of IPs, EDA tools and engineers in chip design

^{*} Yungang Bao, The Four Steps to An Open-Source Chip Design Ecosystem, ACM SIGARCH Visioning Workshop, June 2019

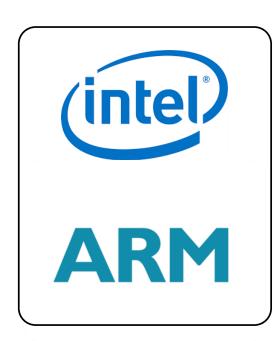
Three levels of OSCE


L1: OPEN ISA

L2: OPEN Design & Implementation


L3: OPEN Tools & Infrastructure

Layout


Open Standards: Instruction Sets Want to be Free!

In 2010, UC Berkeley launched the RISC-V free and open ISA.

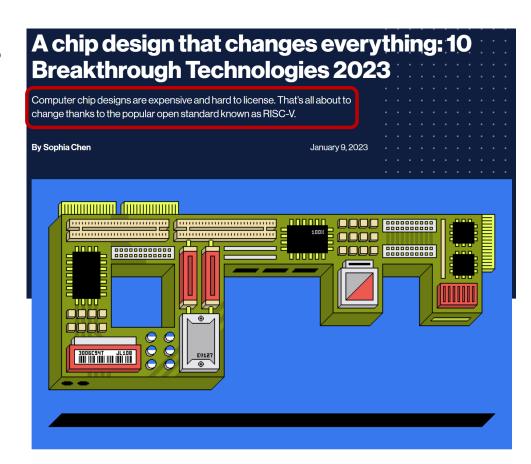
Field	Standard	Free, Open Impl.	Proprietary Impl.
Networking	Ethernet, TCP/IP	Many	Many
os	Posix	Linux, FreeBSD	M/S Windows
Compilers	С	gcc, LLVM	Intel icc, ARMcc
Databases	SQL	MySQL, PostgresSQL	Oracle 12C, M/S DB2
Graphics	OpenGL	Mesa3D	M/S DirectX
ISA	??????		x86, ARM, IBM360

Open-Source: Democratization and Building Consensus

V.S.

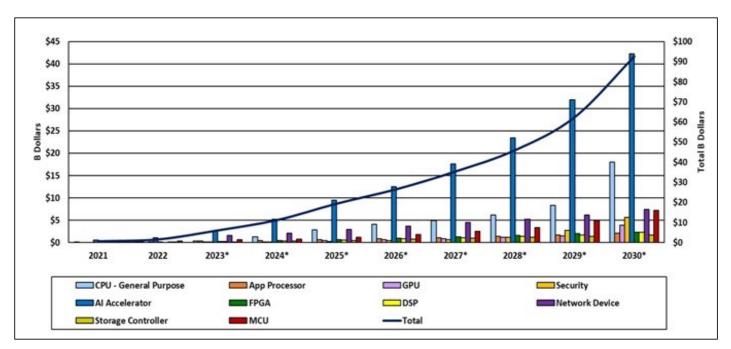
- Private owned
- Monopoly

- Open development
- Open and shared ecosystem


A chip design that changes everything

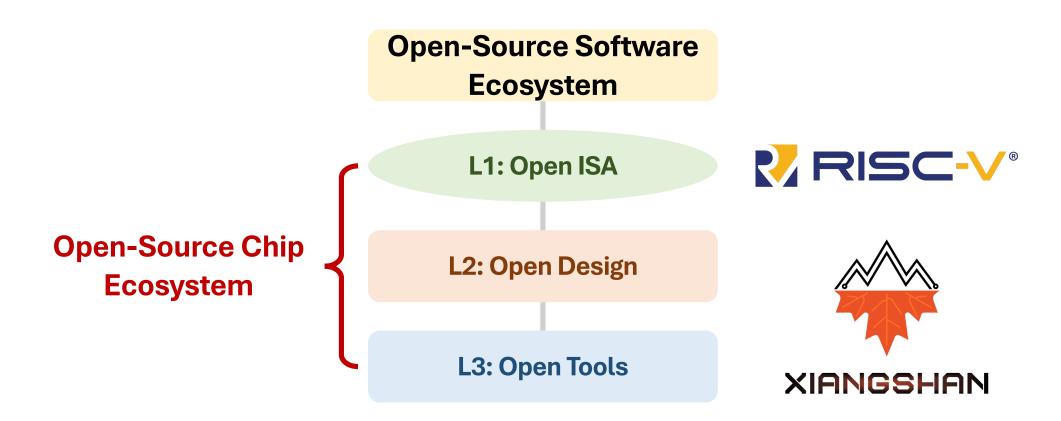
10 Breakthrough Technologies 2023

Ever wonder how your smartphone connects to your Bluetooth speaker, given they were made by different companies? Well, Bluetooth is an open standard, meaning its design specifications, such as the required frequency and its data encoding protocols, are publicly available. Software and hardware based on open standards—Ethernet, Wi-Fi, PDF—have become household names.


Now an open standard known as RISC-V (pronounced "risk five") could <u>change how</u> companies create computer chips.

--- MIT Technology Review

RISC-V: A mainstream market (> \$90 billion) by 2030


• The global market size is projected to reach \$92.7 billion by 2030, with a compound annual growth rate of 47.4%.

SHDgroup

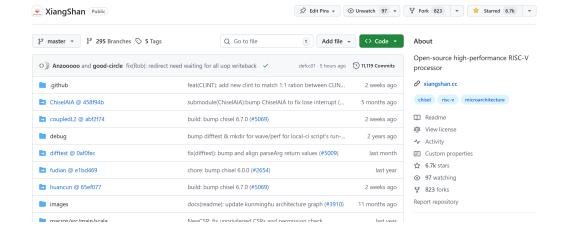
Global Revenue Forecast for RISC-V SoC Chips

The XiangShan Project

Outline

- The Era of Open-Source Chips
- Open-Source Industrial-Competitive RISC-V Chips
- Open-Source Chip Design Tools
- Open-Source Development & Business Models
- Conclusions

XiangShan: Open-Source High Performance Processors


L1: OPEN ISA (RISC-V)

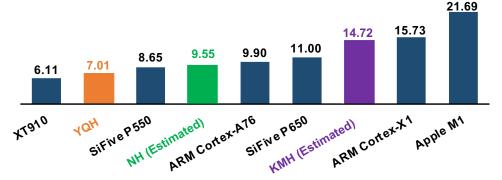
L2: OPEN Design/Implementation

L3: OPEN Framework/Tools

Fragrant Hill in Beijing

> 6.7K stars, > 820 forks on GitHub

The Open-Source RISC-V CPU


• **Vision**: To establish an open-source RISC-V core backbone like **Linux**, which can be widely used in *industry* and support innovative ideas from *academia*.

XiangShan: Open-Source High Performance Processors

https://github.com/OpenXiangShan/XiangShan

- 1st generation: Yanqihu (YQH)
 - RV64GC, single-core, superscalar OoO
 - 28nm tape-out, 1.3GHz, July 2021
 - SPEC CPU2006 7.01@1GHz, DDR4-1600
- 2nd generation: Nanhu (NH)
 - RV64GCBK, dual-core, superscalar OoO
 - 14nm GDSII delivery, 2GHz, 2023 Q3
 - Estimated** SPECint 2006 19.10@2GHz
- 3rd generation: Kunminghu (KMH)
 - RV64GCBKHV, quad-core, superscalar OoO
 - Advanced-node, 3GHz, 1.5x IPC of NH
 - Close collaboration with industrial partners

SPECint 2006/GHz* (Proportional to IPC)

^{*} Source: XT910@ISCA'20, SiFive, AnandTech

^{**} Updated January 5, 2023

XiangShan Gen 3: Kunminghu

- Target ARM Neoverse N2
 - SPECCPU2006: 45@3GHz (15/GHz)
 - Vector/Hypervisor extension supported
- A Joint Dev Team (coordinated by BOSC)

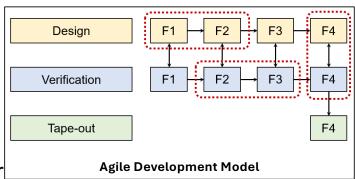
Kunming Lake in Beijing

Highlights in XiangShan Gen 3 Kunminghu

Functional Enhancement

- Support RISC-V Vector/Hypervisor extension
- Support RVA23 profile
- Support interconnection based on CHI protocol

Performance Exploration


- Performance boost in frontend, backend, load-storl
- Performance model calibrated with RTL
- Workflow: DSE on perf model => Impl. & fine tunning on RTL

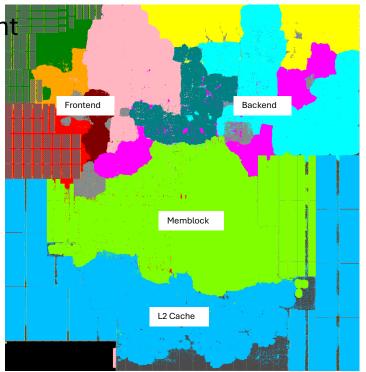
Functional Verification

- Hierarchical verification flow spanning system/integration/unit level + FPGA prototyping
- Industrial-grade verification process

Physical Design

- Experienced physical design team
- Simultaneous iteration of RTL coding based on timing evaluation

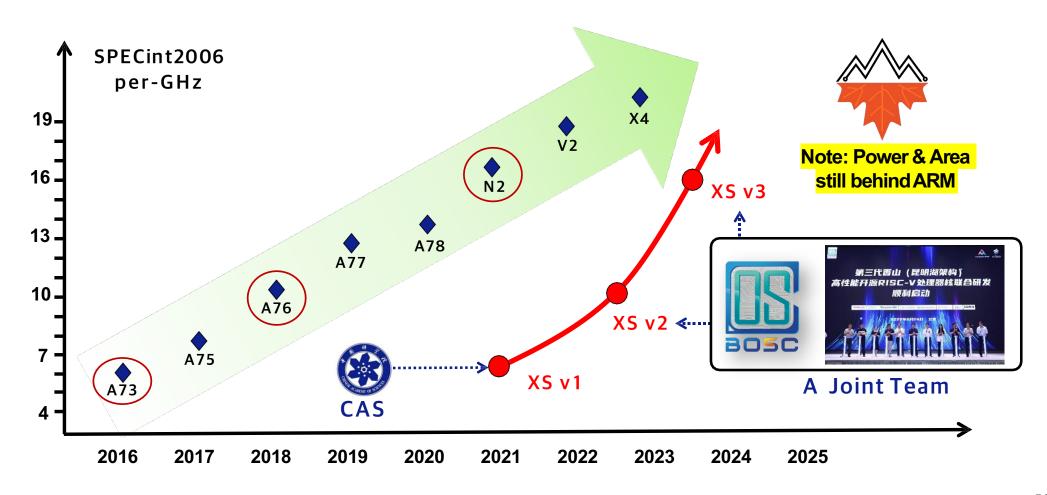
Performance Evaluation of Gen 3 Kunminghu


Method: SPEC CPU checkpoints selected by Simpoint

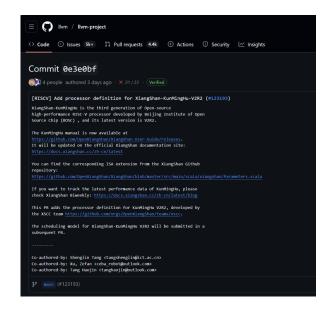
• Base: GCC 12 –O3, RV64GCB, jemalloc

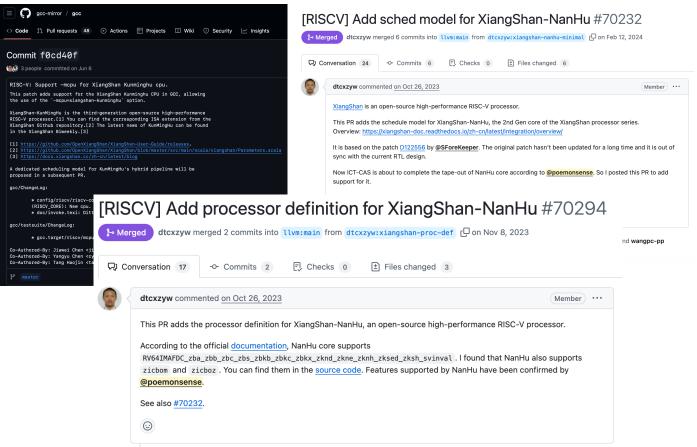
1MB L2 and 16MB L3

• Simulated@3GHz with DRAMsim3 DDR4-3200


SPECint 2006 e	st.@ 3GHz	SPECfp 2006 est.@ 3GHz		
400.perlbench	35.88	410.bwaves	66.89	
401.bzip2	25.50	416.gamess	40.89	
403.gcc	46.72	433.milc	45.25	
429.mcf	58.13	434.zeusmp	52.10	
445.gobmk	30.26	435.gromacs	33.65	
456.hmmer	41.60	436.cactusADM	46.16	
458.sjeng	30.53	437.leslie3d	46.01	
462.libquantum	122.50	444.namd	28.88	
464.h264ref	56.57	447.dealII	73.43	
471.omnetpp	39.37	450.soplex	51.99	
473.astar	29.23	453.povray	53.44	
483.xalancbmk	72.03	454.Calculix	16.38	
GEOMEAN	44.15	459.GemsFDTD	37.18	
		465.tonto	36.67	
		470.lbm	91.24	
		481.wrf	40.62	
		482.sphinx3	48.57	
		GEOMEAN	44.60	

Floorplan of KMH V2R2 (single core)


^{*} Updated in March 2025


* XiangShan: Open-Source High Performance Processors

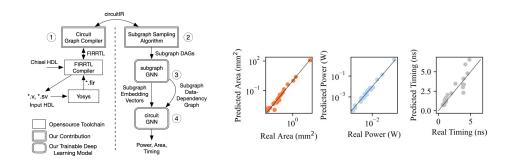
Compiler Support for Nanhu and Kunminghu

LLVM & GCC support XiangShan optimizations (BOSC, ISCAS, ICT)

OpenXiangShan: Empowering Architecture Research

• An open-source, continuously developing research platform

Your research field	XiangShan provides	
Microarchitecture	Performance : An industrial-competitive, high-performance superscalar OoO microarchitecture	
	Functionality: RVA23-compatible RISC-V design	
	Development: mature, user-friendly design flows	
	Tapeouts by the XiangShan team and leading industrial partners with real-world deployment	
Chip development tool	Realistic and challenging research problems	


An Effective Infrastructure for Research

- Topic: Computer Architecture
 - XiangShan: a realistic out-of-order RISC-V implementation with industry-competitive performance and an active open-source community
 - MinJie provides the toolchains
- Microarchitecture, accelerators, novel architectures, profiling, systems, benchmarking, security, compilers, ...

Imprecise Store Exceptions, ISCA'23
Single Address Space Faas with Jord, ISCA'25

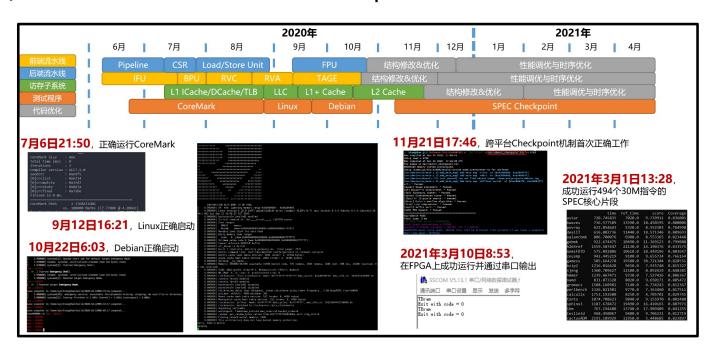
- Topic: Agile Chip Development
 - XiangShan is a progressive, configurable, complicated, challenging benchmark
 - MinJie provides a good startpoint
- HDLs, verification, performance, power, area, prototyping, DFT, synthesis, placement, routing, ECO, ...

SNS v2, MICRO'23 (Duke University)

Outline

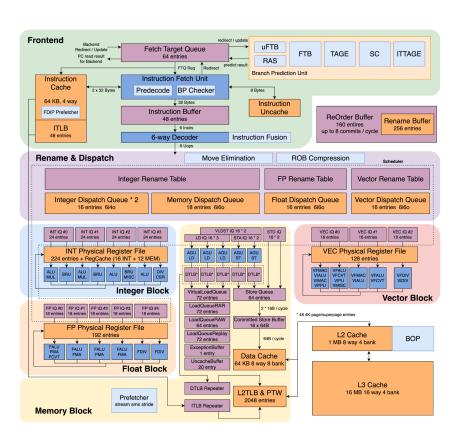
- The Era of Open-Source Chips
- Open-Source Industrial-Competitive RISC-V Chips
- Open-Source Chip Design Tools
- Open-Source Development & Business Models
- Conclusions

Open-Source Infrastructures (Tools) for Chips

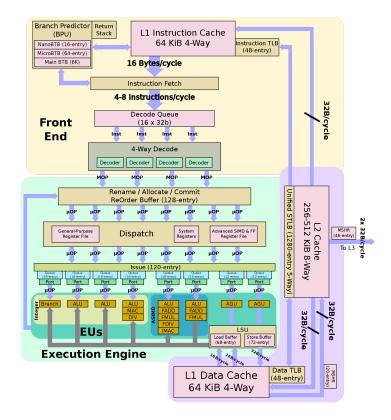

XiangShan Chips

- **➤ Complex ISAs**
- ➤ Microarchitecture
- > PPA improvements
- **>**

- > Lower thresholds
- > Agile development
- **>** Parameterization
- >


Chisel: agile hardware description language

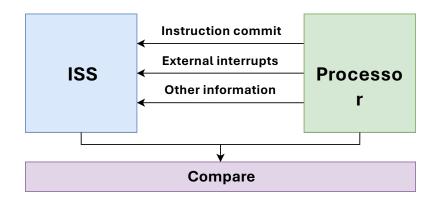
- 2018: quantitatively comparing Chisel and Verilog, reducing code size by 80%
- 2020: completed the 1st generation of XiangShan, booting Linux within 3 months
- 2022: 67,000 lines of design code and 31,000 lines of verification code
- 2024: 214,000 lines of code in all code repositories



Better design flexibilities

Kunminghu has **212** configurable parameters, and its L2/L3 cache has **65** configurable parameters

ARM A76 has **8** configurable parameters, and the DSU (L3) has **25** configurable parameters.

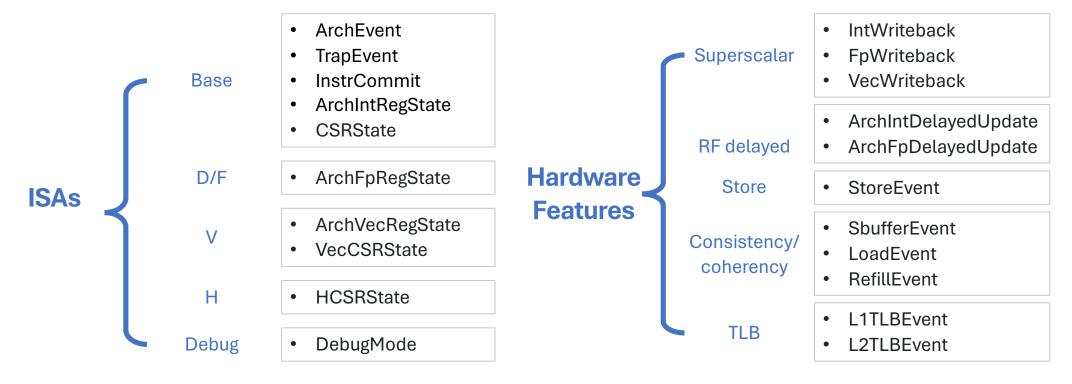

DiffTest: a co-simulation CPU verification framework

Co-simulation workflow

- Instructions commit/other states update
- The simulator executes the same instructions
- Compare the architectural states
- Abort or continue

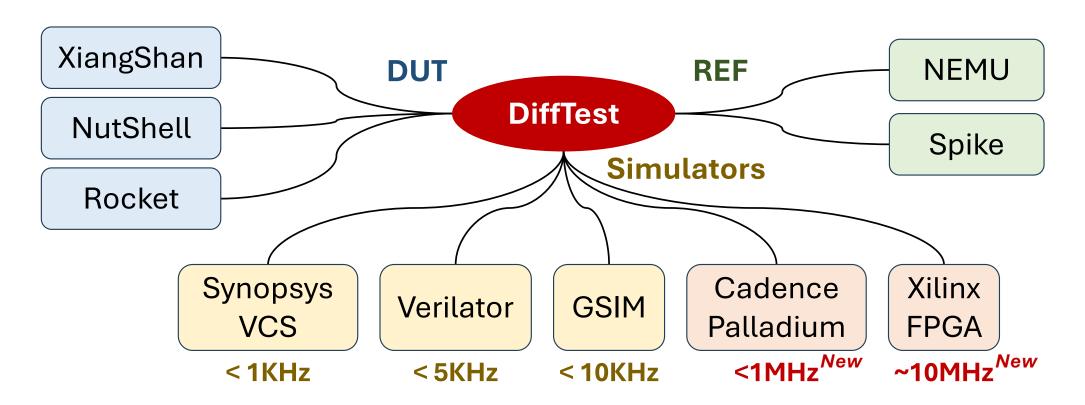
Verification infrastructures for CPUs

- APIs for HDLs such as Chisel/Verilog
- RTL simulators such as Verilator, VCS,
 Palladium
- RISC-V ISS such as Spike, NEMU


Basic architecture

```
while (1) {
    icnt = cpu_step();
    ref_step(icnt);
    r1s = cpu_getregs();
    r2s = ref_getregs();
    if (r1s != r2s) { abort(); }
}
```

Online checking


Standard interfaces for RISC-V CPU verification

 Key idea: information probes support flexible combination for different scenarios

Accelerated co-simulation on Emulator/FPGA

DiffTest now supports hardware-accelerated co-simulation

DiffTest-H: semantic-aware co-simulation acceleration

- Optimizes communication overhead for verification data packets
 - Batch: Reduces communication frequency
 - Squash: Reduces communication data volume
 - Replay: Maintains debugging granularity

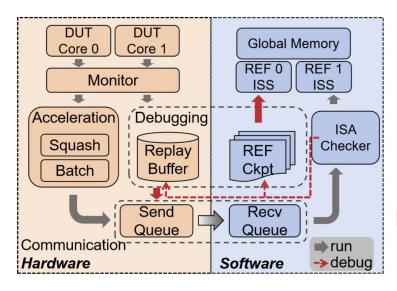


Figure: workflow

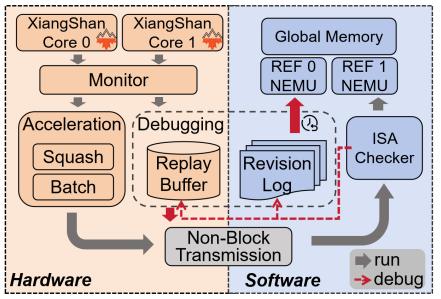
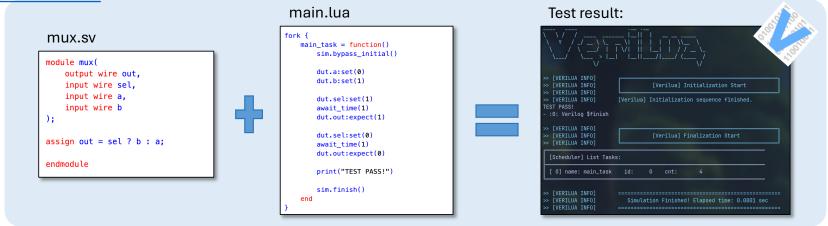

Category	Types	Representative Examples	
Control Flow	5	Exceptions and interrupts,	
Control Flow		Instruction commits, Traps,	
Dogistor Undates	0	CSRs, General-purpose registers,	
Register Updates	9	Floating-point registers,	
Mamaru Agaga	3	Load/store operations,	
Memory Access		Atomic memory operations,	
Mamany III ananahar	6	Cache refill operations,	
Memory Hierarchy		L1/L2 TLB operations,	
RISC-V Extensions	9	Vector/Hypervisor CSRs,	
KISC-V Extensions		Vector registers,	

Table: Packets

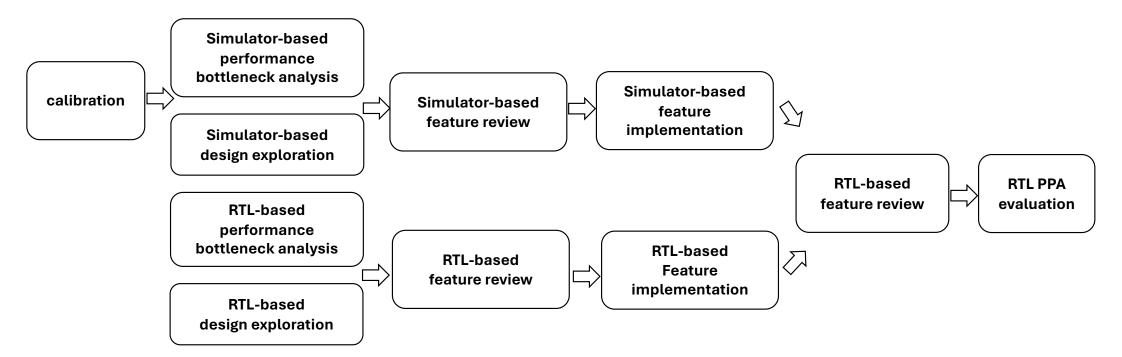
DiffTest-H: Hardware-Accelerated Co-Simulation Verification

- 13.8 MHz on FPGA, instruction-level debugging
- Deployed on XiangShan, with 151 bugs uncovered
- Open-Source at github/OpenXiangShan/difftest

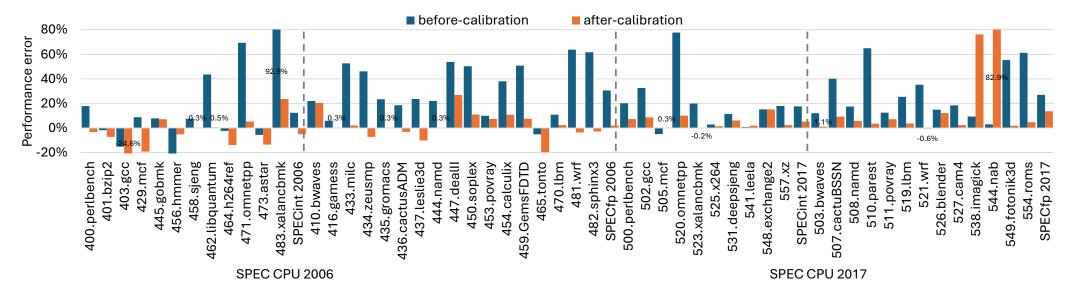


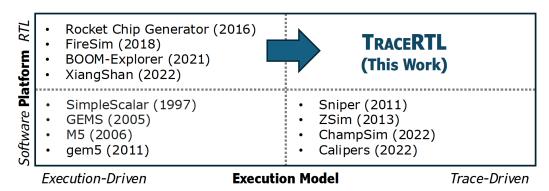
Verilua: an easy-to-use unit-testing framework

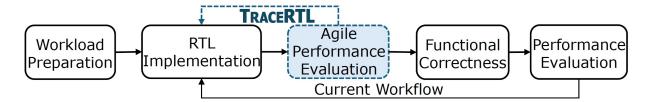
New option for hardware verification


	Verilua	Cocotb	Fault	PyMTL/PyHGL/Chisel	UVM/SV
核心技术	VPIML	VPI	IR + 多后端	单一语言垂直整合	
执行模型	在线仿真+离线分析	在线仿真	(元编程)	在线仿真	在线仿真
验证资产复用	跨语言、跨场景	否	跨语言	否	
HDL				Υ	Υ
HVL	Υ	Υ	Υ	Υ	Υ
HSE	Υ				
WAL	Υ				
学习门槛	低	中	中	高	高

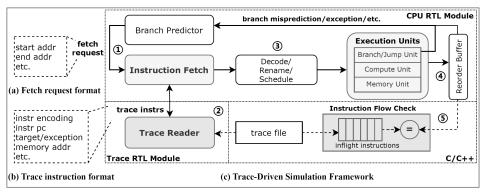
https://github.com/cyril0124/verilua

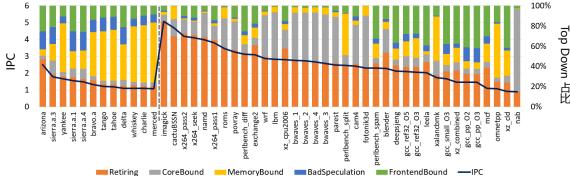

* XS-GEM5: Calibrated Gem5 Simulator


* XS-GEM5: Calibrated Gem5 Simulator


- Based on GEM5, calibration was completed for XiangShan
- The overall error with RTL (KunminghuV2) in SEPC06 is less than 3%
 - The error of a single benchmark is less than 5%
 - Currently being used for architecture exploration of the KunminghuV3

TraceRTL: Trace-driven RTL CPU Model


- Applying mature architecture exploration techniques from simulators to RTL
- Insight: Architecture exploration only requires essential performance components; complete functional correctness is *unnecessary*
 - Performance evaluation is performed before ensuring CPU functional correctness



TraceRTL: Trace-driven RTL CPU Model

- Automated, low-intrusion modification of a trace-driven XiangShan
 - Eliminating functional dependencies: Chisel, circuitry, architecture, functional abstraction, performance sensitivity, etc.
 - **Eliminating performance errors**: The impact of lost information in the trace, including addresses, data, etc.

Trace-driven CPU from XiangShan

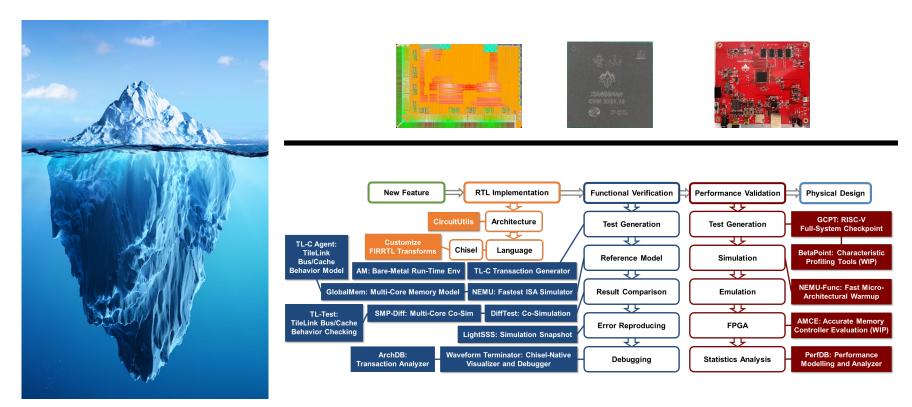
Top-Down differences between Google Datacenter Workloads and SPEC CPU

FPGA accelerated design space exploration

- **Design Space Exploration (DSE)**: Searching the CPU design parameter space to find the PPA balance point
- Due to several *limitations*, all current work is performed on a simulator.
 - Speed Limitation: Single simulation speed should be fast enough.
 - Parameter Limitation: Simulators offer flexible parameter tuning, while RTL is challenging

FastDSE: FPGA + logic/physical parameter decoupling

- FastDSE: FPGA Acceleration + Logic/Physical Parameter Decoupling
 - Stable operation at 50MHz
 - accelerating the DSE process by 68.7 times.


RobSize(Physical) = P entries (compile-time provision) logical active region logical inactive region RobSize(Logical) = L entries (run-time provision) • gate enqueue/dequeue by L • compute full/empty w.r.t L • mask access to [0, L-1]

Logic/Physical Parameter Decoupling

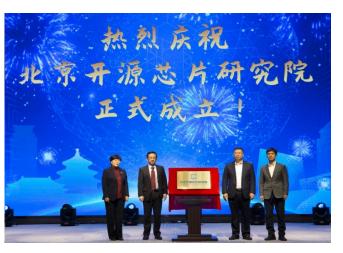
- One physical param
- Multiple logical parameters
- Adjust dynamically

MinJie: Open & Agile Development Toolchain

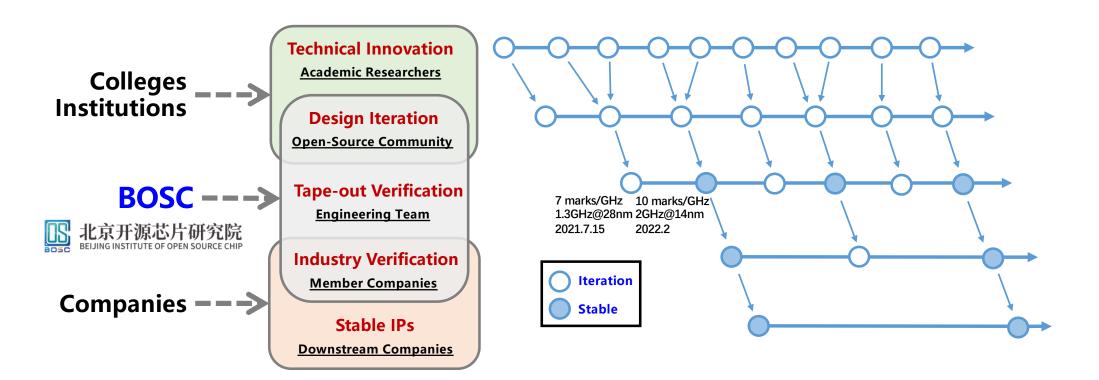
- It supports a new model of collaborative chip development based on open source, continuously building a team of over 600 people (the largest in the world).
 - Selected as one of the 12 IEEE MICRO Top Picks

Outline

- The Era of Open-Source Chips
- Open-Source Industrial-Competitive RISC-V Chips
- Open-Source Chip Design Tools
- Open-Source Development & Business Models
- Conclusions


Development Model for Open-Source Chips

- With the support of the Beijing Municipal Government and the Chinese Academy of Sciences, 16 companies jointly launched the Beijing Institute of Open Source Chip (BOSC) to accelerate the industrial development of Xiangshan.
- BOSC has assembled a team of >500 people, becoming one
 of the largest RISC-V CPU core R&D teams in the world.



Dec. 6, 2021

Tiered Rolling Open-Source Model

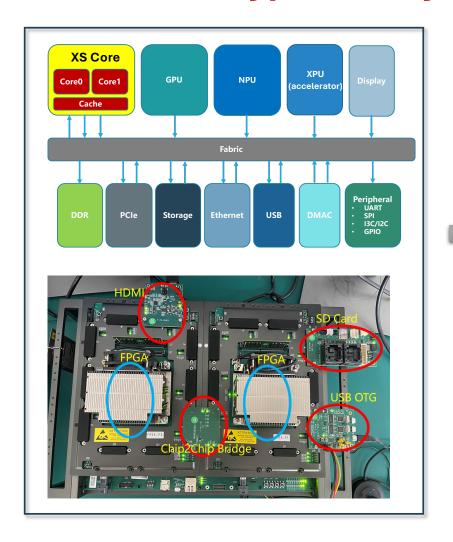
Chip products based on XiangShan

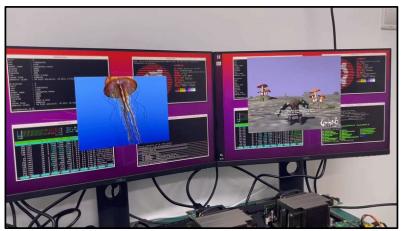
Kunminghu V2

User	Product	Tapeout Time
Α	8-core video codec	2025/9
В	64-core server	2025/9
C	128-core server	2025/10月
D	128-core server	2026/3
В	8-core client SoC	2026/3
E	16-core	2026/3
F	64-core server	2026/3
G	4-core client SoC	2026/6
Н	128-core server	2026/12

Nanhu

User	Product	Tapeout Time	
I	GPGPU	2024/production	
J	GPGPU	2024/production(>10k)	
K	4-core FPGA ctrl.	2025/12	
L	4-core sec. ctrl.	2025/12	
М	4-core	2025/12	
Ν	4-core router ctrl.	2026/3	


XiangShan Nanhu Chips



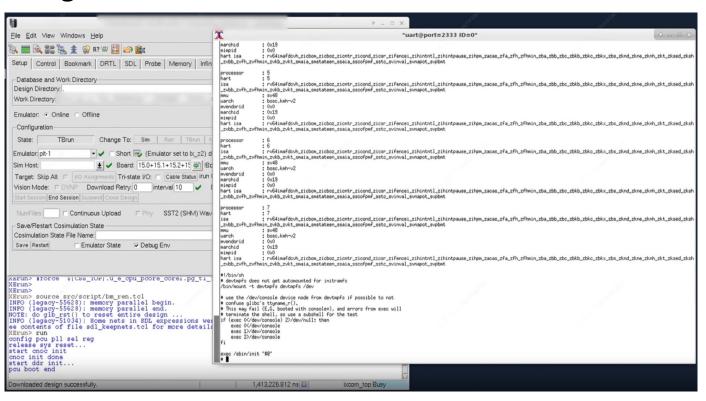
FPGA Prototype in Only Two Weeks



Source: Xinchen Technology

Real Chip of XiangShan Nanhu

- Test chip was back in October 2023
 - Successfully brought up Linux and working with PCIe device (GPU, Ethernet, USB..)



Ruyi XiangShan Book Design by ISCAS, Inchi, MilkV

^{*} Genshin Impact · Cloud, only ~ 1 fps, just for fun

Linux Boot on 8-Core XiangShan Kunminghu V2

 Lanxin Computing has successfully launched Linux on an 8-core SoC built on the Kunminghu V2

Roadmap 2025: 3 CPU Compute Systems

CPU

Nanhu V5

- SPEC06 10/GHz
- 2GHz@12nm
- Target ARM A76
- 2025/10 delivery

Kunminghu V2

- SPEC06 15/GHz
- 3GHz@7nm
- 64-core
- 2025/4 delivery

Kunminghu V3

- SPEC06 22/GHz
- 3GHz@7nm
- 128-core
- 2025/12 delivery

Zhujiang V1

NoC


- Ring Bus
- Max 16-core
- Cache Coherency
- 2025/10 delivery

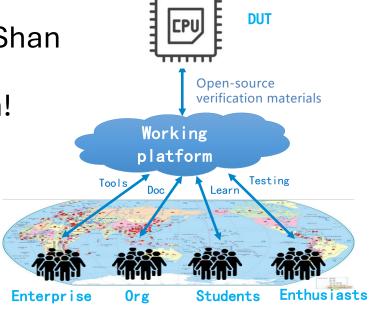
Wenyuhe V2

- Target CMN-700
- 128-core
- Chiplet support
- 2025/12 delivery

Advantages of open-source collaborative development

- Traditionally, **test cases are** *valuable private assets* of chip companies.
- With open source, it can be directly deployed within different companies.
 - A total of 1,467 bugs have been fixed, of which 492 (33.4%) were submitted by companies.

UnityChip Verification: Crowd-Sourcing Verification


Chip verification using an open-source crowdsourcing model

Bringing together software and hardware engineers

A verification campaign launched on XiangShan

Let 10,000 people participate in verification!

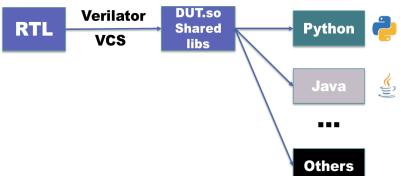
https://open-verify.cc/en/

UnityChip: A Croudsourcing Platform for Chip Verification

Features: Involve software engineers

- Enable crowdsourcing
- Support multi-languages
- Be compatible with UVM

Effectiveness


• 5 undergraduate students found 10 bugs in 2 months

Easy-to-Use

- Students not familiar with Linux and Python
- Learn to use tools in 5 days
- Start adding test cases after another 10 days

UnityChip Competition for XiangShan

- Task: Unit Test for IFU, BPU, ITLB, etc.
- Scan the QR code for more information

GitHub Link

Open Problems on Chip Development Infrastructures

- Sharing *the real-world infrastructure challenges* faced by the XiangShan project
- Hardware Descriptions
- Functional Verification
- Performance Improvements

Problems

- Architecture
- Software Engineering
- EDA
- PL/Sys/...

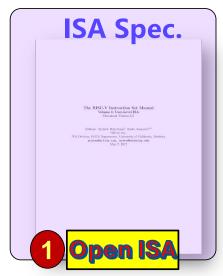
Directions

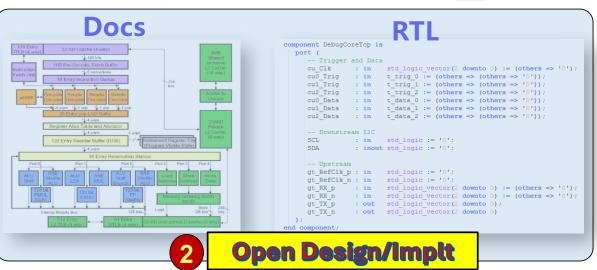
- Discussions
- Interns
- Full-time
- Research/Industrial
 Collaborations

Participation

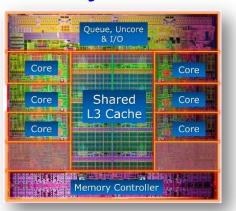
Outline

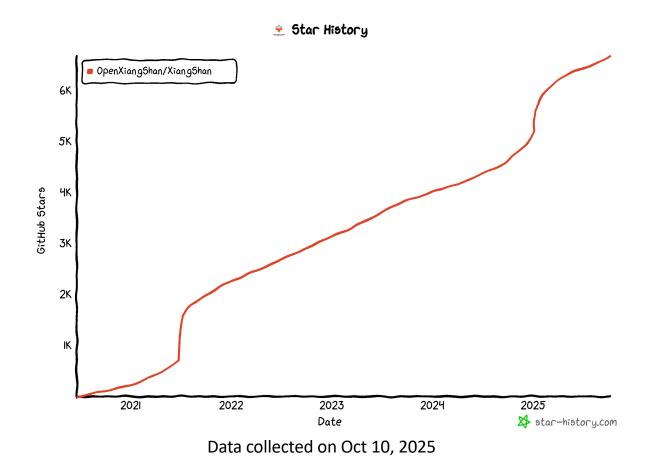
- The Era of Open-Source Chips
- Open-Source Industrial-Competitive RISC-V Chips
- Open-Source Chip Design Tools
- Open-Source Development & Business Models
- Conclusions


XiangShan achieves L2.5


L1: OPEN ISA

L2: OPEN Design/Implementation


L3: OPEN Framework/Tools



Layout

One of the Most Popular Open-Source Chip Projects

• **GitHub:** >6700 Stars, > 800 Forks

15+ XiangShan Tutorials Around the World

- HPCA, Edinburgh, Scotland
- ASPLOS, San Diego, USA
- RVSC, Hangzhou, China
- MICRO, Austin, USA

2024

- HPCA, Sydney, Australia
- More coming ...

2026

2023

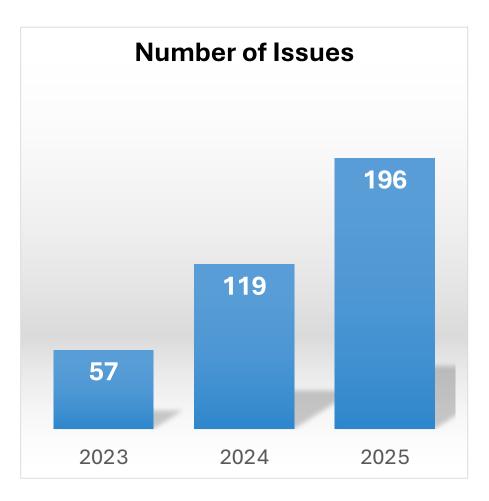
- ASPLOS, Vancouver, Canada
- RVSC, Beijing, China
- MICRO, Toronto, Canada

2025

- HPCA, Las Vegas, USA
- ASPLOS, Rotterdam, Netherlands
- RVSE, Paris, France
- ISCA, Tokyo, Japan
- APPT, Athens, Greece
- RVSC, Shanghai, China
- MICRO, Seoul, Korea

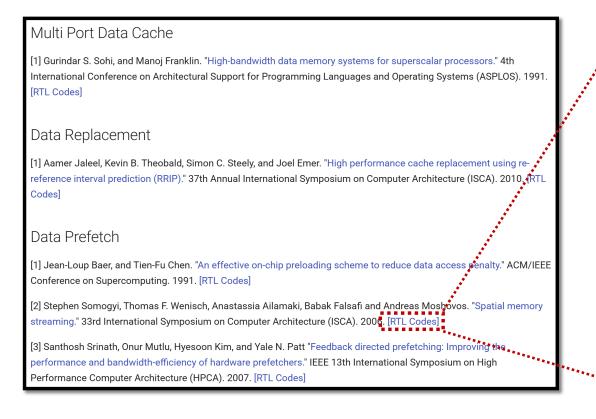
Welcome old and new friends!

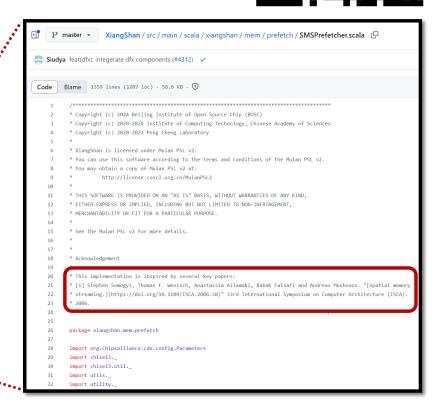
XiangShan Open-Source Community Conference



The 4th RISC-V Summit China 2024 Hangzhou, China

The 5th RISC-V Summit China 2025 Shanghai, China

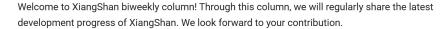

GitHub Issues & Discussions



- Time to First Response for Issues
 - Average: 25 hours
 - Median: 13 hours
- Feel free to create an issue on GitHub

Acknowledgments in XiangShan

- A list outlines 32 techniques used in the XiangShan RTL cod
- https://docs.xiangshan.cc/acknowledgments/


Biweekly Report in English

- our recent progress and performance data
- https://docs.xiangshan.cc/zhcn/latest/blog/category/biweekly-en/

Biweekly-en

2025年9月29日·分类于 Biweekly-en·需要 5 分钟阅读时间

[XiangShan Biweekly 86] 20250929

This is the 86th issue of the biweekly report.

We are very pleased to share two pieces of news with you.

On September 20, the XiangShan team won the first Open Source Contribution Award from the CCF Architecture Committee. This collective award holds special significance for the XiangShan team—it represents recognition and support from our academic peers for the open-source processor and the team itself, laying the foundation for XiangShan to have a broad impact. The XiangShan team will continue to move forward, step by step, striving to keep XiangShan alive for 30 years!

On September 22, Innosilicon released the "Fenghua 3" full-featured GPU. The "Fenghua 3" GPU successfully integrated the XiangShan "Nanhu" processor IP core, which is performance-competitive with the ARM Cortex-A76, as its high-performance on-chip main control CPU. This integration marks a new phase in the industrial application of open-source high-performance CPU IPs and signifies that RISC-V can carve out a path different from the traditional ARM model.

We believe that open-source chips do not equate to low performance or low quality. Open source will profoundly change the cost structure of chip development, providing a new paradigm for chip design in the industry.

User Guide

- For Software Developers and Hardware Integrators
- https://docs.xiangshan.cc/projects/user-guide/en/late

XiangShan
Open-Source Processor
User Guide

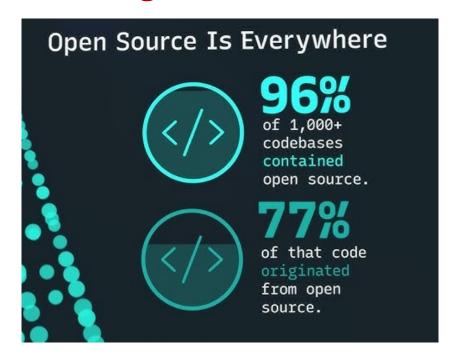
Applicable to Kunminghu V2R2

e27508a 2025年9月1日

Design Document

- Detailed Docs on Microarchitecture and Modules
- https://docs.xiangshan.cc/projects/design/en/latest/

XiangShan
Open-Source Processor
Design Document


Applicable to Kunminghu V2R2

52fc49d

Open-Source: From Software to Hardware

- 96% software codebases contain open-source code (overall 77%)
- In the future, the proportion of **open-source IP** in the chip industry will inevitably break through zero, and will continue to increase.

OpenXiangShan: Together for a Shared Future

- Feel free to contact us through email or file issues on GitHub!
 - all@xiangshan.cc
 - https://github.com/OpenXiangShan/XiangShan

XiangShan Home page

XiangShan Document

XiangShan Biweekly Report

XiangShan User Guide

XiangShan Design
Document