

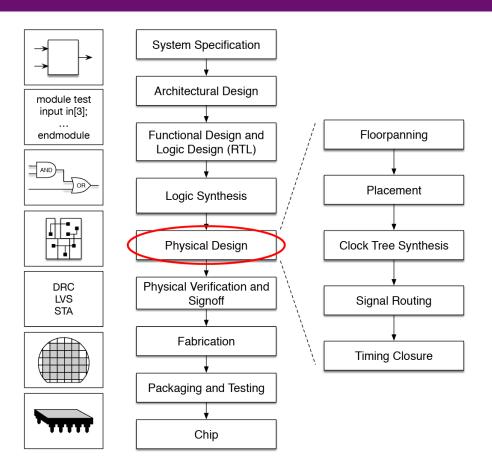
Open3DBench: Open-Source Backend Implementation Flow for 3D-IC

Yunqi Shi

Nanjing University, School of Al

Email: shiyq@lamda.nju.edu.cn

github:



arXiv:

Electronic Design Automation (EDA) and Physical Design (PD)

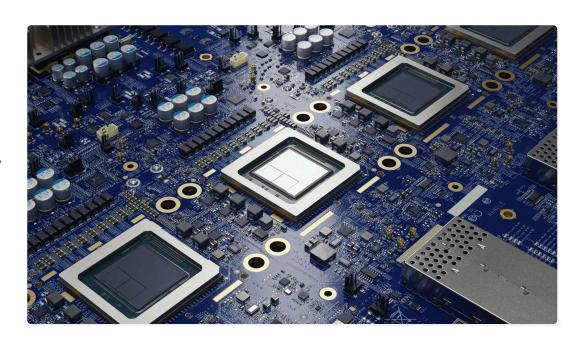
- Definition of Electronic Design Automation (EDA)
- Role of Physical Design (PD)

 $\hbox{[1] ``Placement in Advanced Technology Nodes'', Bei Yu, https://www.cse.cuhk.edu.hk/~byu/doc/2021-Place.pdf}$

AI for EDA

nature

Article Published: 09 June 2021


A graph placement methodology for fast chip design AlphaChip

Google DeepMind

How AlphaChip transformed computer chip design

26 SEPTEMBER 2024

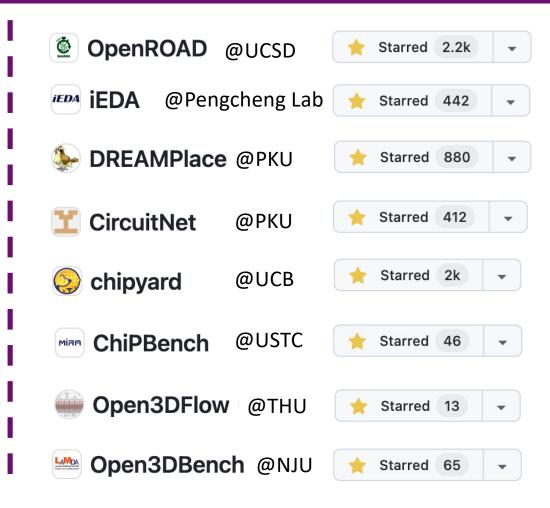
Anna Goldie and Azalia Mirhoseini

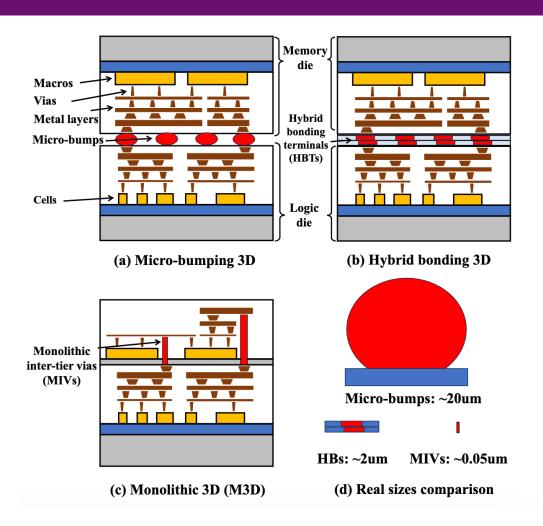
Why Open-Source EDA?

Commercial Tools

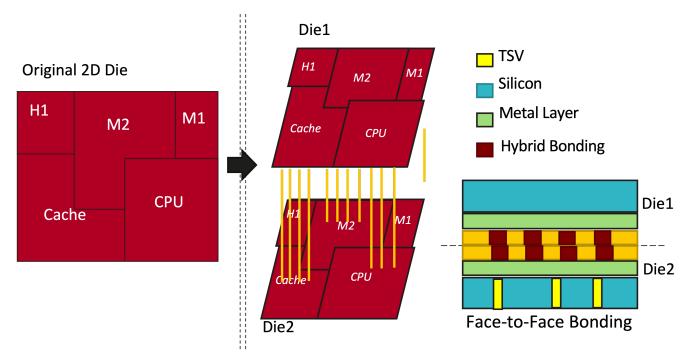
cādence°

Innovus


Integrity 3D-IC Platform



Le3DIC®3D-IC设计平台


Open-Source Tools

- 3D-IC has the potential to sustain Moore's Law
- Three types of inter-connect implementation:
 - Micro-bumping
 - Hybrid Bonding Terminals (HBTs)
 - Monolithic Inter-tier Vias (MIVs)

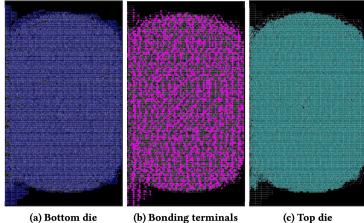
• 3D-IC has the potential to sustain Moore's Law

3D-IC implemented with hybrid bonding terminals (HBTs)

• 3D-IC **physical design** research has attracted tremendous attention these years

ICCAD 2022

CAD Contest



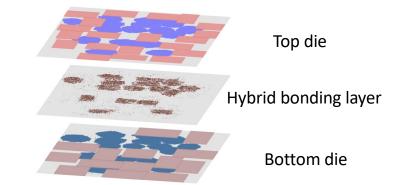
Contest Problems

Problem A Learning Arithmetic Operations from Gate-Level Circuit (Cadence Design Systems, Inc.)

Problem B	3D Placement with D2D Vertical Connections (Synopsys, Inc.)
Problem C	Microarchitecture Design Space Exploration

(DAMO Academy)

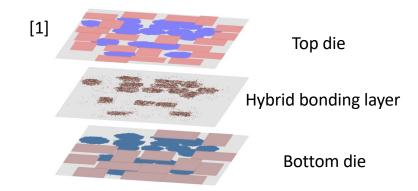
• 3D-IC **physical design** research has attracted tremendous attention these years



CAD Contest

Contest Problems

Problem A	Multi-bit Large-scale Boolean Mat (Cadence Design Systems, Inc.)	ching			
Problem B	3D Placement with Macros (Synopsys, Inc.)				
Problem C	Static IR Drop Estimation Using W	· ·			



- 3D-IC **physical design** research has attracted tremendous attention these years.
- We want to test our 3D EDA algorithms in a standardized and reliable way.

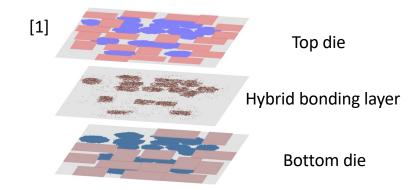
Taking 3D placement as an example:

Contest benchmarks:

- 3D Placement with D2D Vertical Connections @ ICCAD'22 Contest
- 3D Placement with Macros @ ICCAD'23 Contest

 Such contest benchmarks provide standardized comparison. But the host did not provide any implementation details (including valid PDK or design RTLs), narrowing the use of test cases.

[1] Zhao, Yuxuan, et al. "Analytical Heterogeneous Die-to-Die 3D Placement with Macros." TCAD 2024.


 $Initial\ score = HPWL\ of\ top\ die + HPWL\ of\ bottom\ die + \#terminals \\ \times terminal\ cost$

- 3D-IC **physical design** research has attracted tremendous attention these years.
- We want to test our 3D EDA algorithms in a standardized and reliable way.

Taking 3D placement as an example:

Contest benchmarks:

- 3D Placement with D2D Vertical Connections @ ICCAD'22 Contest
- 3D Placement with Macros @ ICCAD'23 Contest

 Such contest benchmarks provide standardized comparison. But the host did not provide any implementation details (including valid PDK or design RTLs), narrowing the use of test cases.

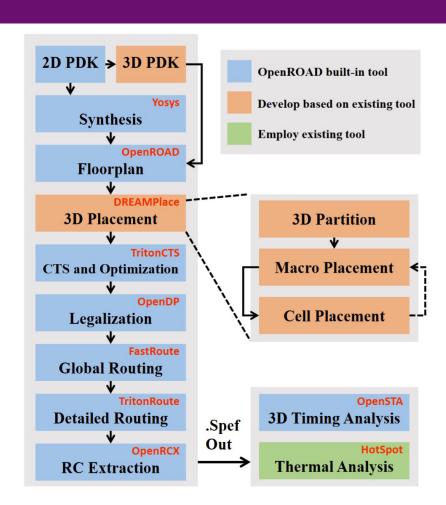
- 3D-IC **physical design** research has attracted tremendous attention these years.
- We want to test our 3D EDA algorithms in a standardized and reliable way.

Taking 3D placement as an example:

Workaround by 2D backend flow:

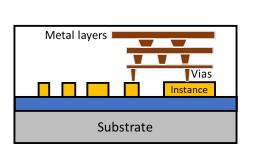
- Macro-3D [1], Pin-3D [2], 3D Net-to-Pad Assignment [3] use Innovus to perform 3D backend flow.
- TA-3D [4] builds a 3D timing model using 2D tool OpenSTA.
- Commercial tools and commercial PDKs prevent replicable comparisons due to license issue.
- Building our own workaround flow may be time consuming and sometimes not reliable enough.

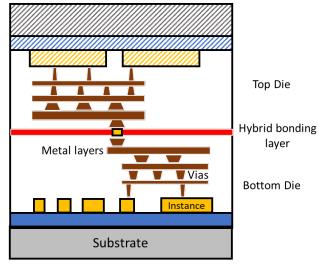
^[1] Bamberg, Lennart, et al. "Macro-3D: A physical design methodology for face-to-face-stacked heterogeneous 3D ICs." DATE 2020.

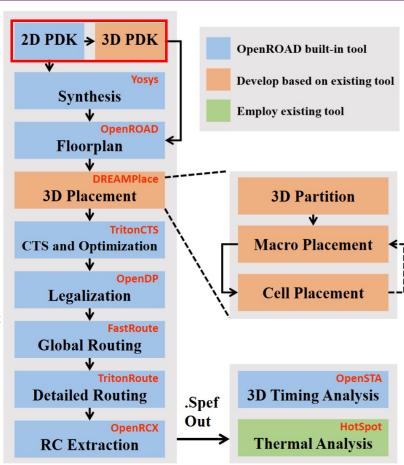

^[2] Pentapati, Sai Surya Kiran, et al. "Pin-3D: A physical synthesis and post-layout optimization flow for heterogeneous monolithic 3D ICs." ICCAD 2020.

^[3] Vanna-iampikul, Pruek, et al. "Placement-Aware 3D Net-to-Pad Assignment for Array-Style Hybrid Bonding 3D ICs." ISPD 2025.

^[4] Kim, Donggyu, et al. "TA3D: Timing-Aware 3D IC Partitioning and Placement by Optimizing the Critical Path." MLCAD 2024

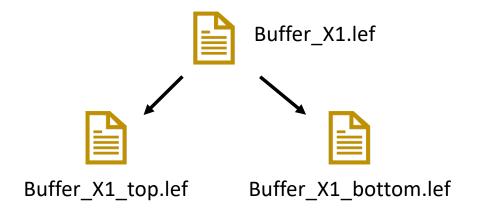

Main purpose:

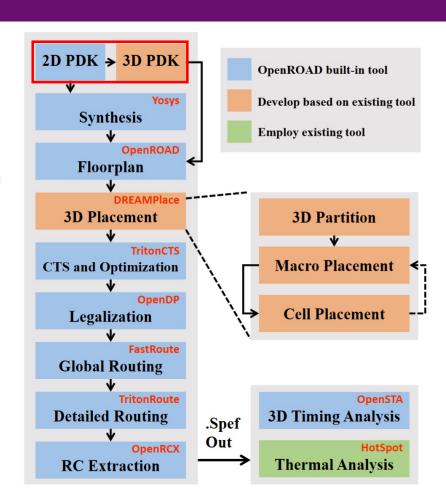

Benchmarking everything in 3D backend flow



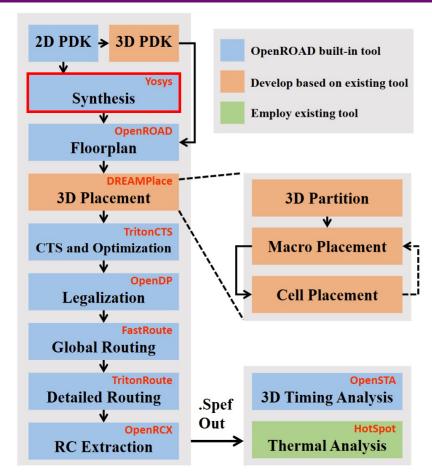
Key idea:

Duplicate the original 2D metal layers and implement the 3D design on one die

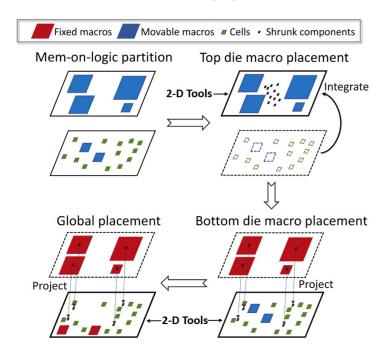


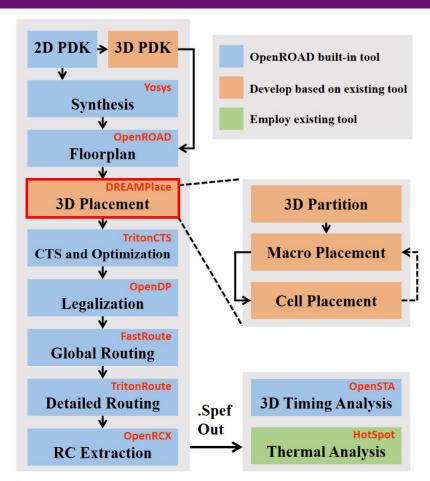


[1] Bamberg, Lennart, et al. "Macro-3D: A physical design methodology for face-to-face-stacked heterogeneous 3D ICs." DATE 2020.


- PDK preparation: Modify NG45 to NG45_3D
 - Duplicate the metal layer in techlef
 - Duplicate the instance lef and lib to distinguish top and bottom die

Design preparation:


Any 2D design (RTL / netlist) supported by OpenROAD-flow-scripts

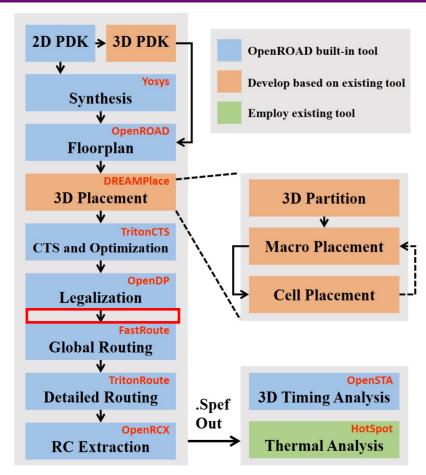


^[1] Bamberg, Lennart, et al. "Macro-3D: A physical design methodology for face-to-face-stacked heterogeneous 3D ICs." DATE 2020.

3D Placement:

Adopt 2D DREAMPlace [1] for workaround

[1] Lin, Yibo, et al. "DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement." DAC 2019.

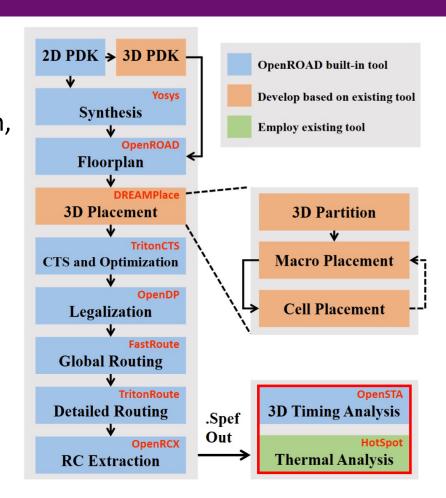

Hybrid Bonding Terminal (HBT)

Top Die

HBT layer
(metal layer, resource = 0)
Insert a buffer pin
serving HBT

Bottom Die

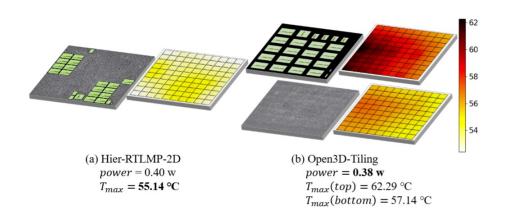
Substrate

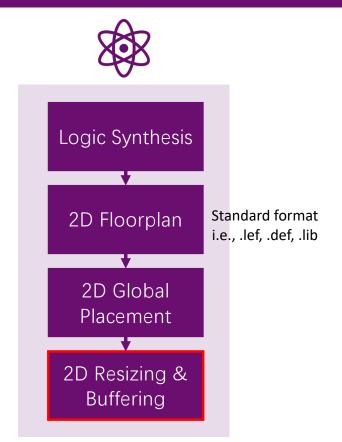


[1] Vanna-iampikul, Pruek, et al. "Placement-Aware 3D Net-to-Pad Assignment for Array-Style Hybrid Bonding 3D ICs." ISPD 2025.

PPA evaluation

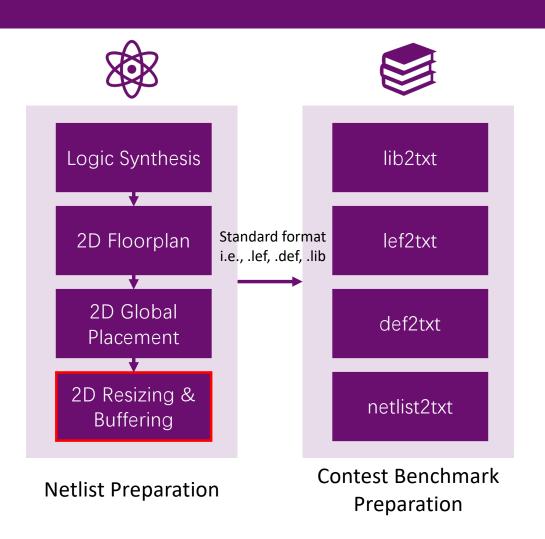
Since we establish the whole design on a 2D vision, and have defined the 3D connections properly, the original 2D OpenSTA [1] can serve 3D timing analysis.

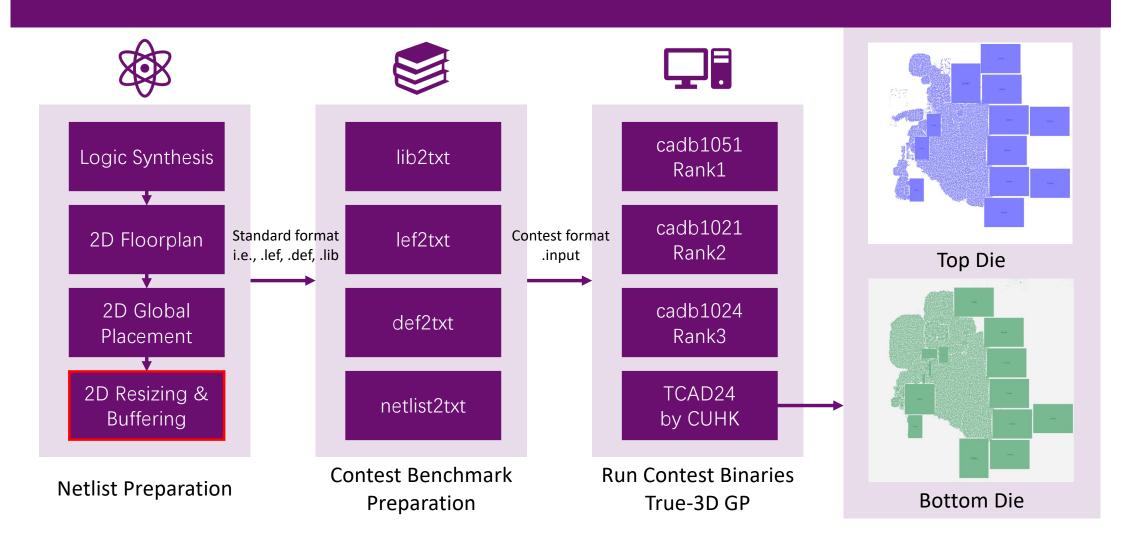

HotSpot [2] supports 3D inherently.

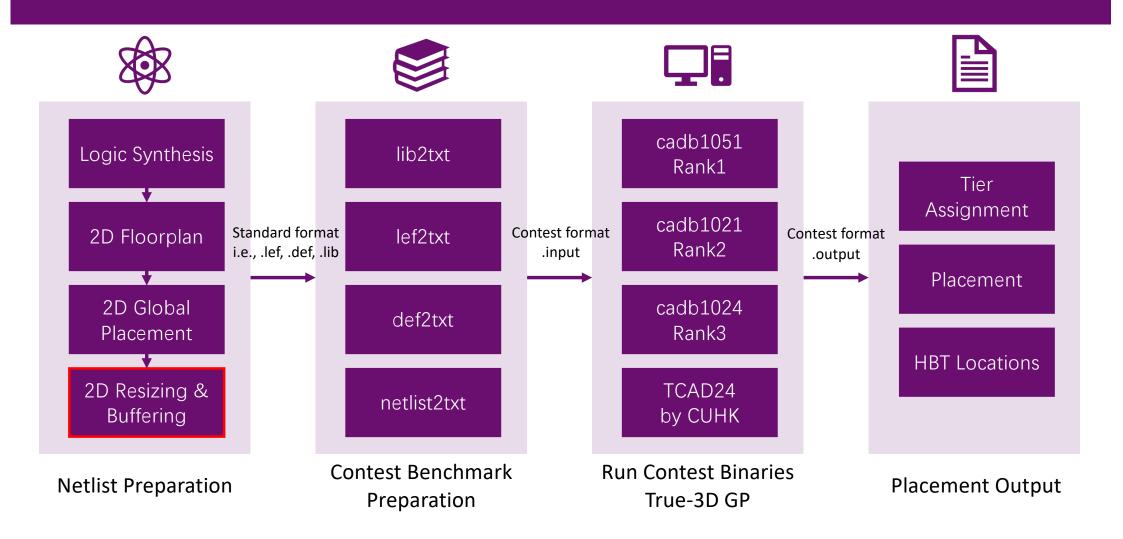

^[1] https://github.com/The-OpenROAD-Project/OpenSTA

^[2] https://github.com/uvahotspot/HotSpot

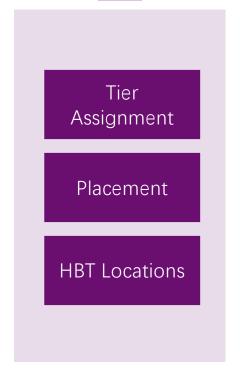
Some evaluations


Designs	Methods	Area	rWL	Overflow	WNS	TNS	Power	T_{max}	Runtime
2 20.610		(mm ²)	(m)	(#)	(ns)	(ns)	(W)	(°C)	(s)
ariane133	Hier-RTLMP-2D	2.25	8.20	132	-2.18	-5766.41	0.393	58.84	3667
	DREAMPlace-2D	2.25	7.18	112	-1.69	-4098.04	0.389	58.69	1556
	Open3D-Tiling	1.00	6.21	0	-1.40	-3049.41	0.360	58.35	1743
	Open3D-DMP	1.00	5.59	0	-1.34	-2648.76	0.360	58.21	1739
ariane136	Hier-RTLMP-2D	2.25	8.63	127	-2.51	-7072.67	0.514	63.40	1779
	DREAMPlace-2D	2.25	7.80	148	-2.71	-7561.23	0.508	61.14	1720
	Open3D-Tiling	1.00	6.32	0	-2.38	-6125.24	0.471	60.93	1791
	Open3D-DMP	1.00	6.05	0	-2.45	-6603.91	0.471	62.27	1870
black_parrot	Hier-RTLMP-2D	1.76	12.41	68	-6.96	-6289.17	0.398	55.14	1819
	DREAMPlace-2D	1.76	12.23	334	-6.57	-5268.85	0.399	55.26	1728
	Open3D-Tiling	0.81	8.08	0	-5.76	-2251.30	0.376	62.29	1895
	Open3D-DMP	0.81	7.79	0	-5.67	-4067.11	0.374	60.97	1920
	Hier-RTLMP-2D	0.56	3.00	30	-1.88	-523.27	0.152	52.63	1063
har har	DREAMPlace-2D	0.56	2.89	36	-1.30	-246.99	0.153	53.08	916
bp_be	Open3D-Tiling	0.30	2.40	0	-1.21	-188.86	0.144	61.17	998
	Open3D-DMP	0.30	2.42	0	-0.89	-108.89	0.144	59.11	1053
	Hier-RTLMP-2D	0.48	1.81	6	-1.40	-942.36	0.302	64.09	449
	DREAMPlace-2D	0.48	1.73	30	-1.51	-978.59	0.305	63.62	239
bp_fe	Open3D-Tiling	0.24	1.38	0	-1.53	-729.42	0.284	87.33	398
	Open3D-DMP	0.24	1.30	0	-1.37	-814.64	0.283	82.32	388
bp_multi	Hier-RTLMP-2D	1.21	6.20	36	-7.97	-12072.10	1.143	86.18	868
	DREAMPlace-2D	1.21	5.63	9	-8.30	-10946.20	1.126	85.50	760
	Open3D-Tiling	0.64	4.06	0	-7.01	-9246.70	1.062	112.09	883
	Open3D-DMP	0.64	4.03	0	-8.03	-9812.57	1.050	98.09	935
bp_quad	Hier-RTLMP-2D	12.96	46.63	3429	-3.66	-39020.00	1.822	66.05	8010
	DREAMPlace-2D	12.96	41.99	3968	-2.05	-31231.90	1.848	68.17	6336
	Open3D-Tiling	6.25	50.19	0	-2.62	-31124.70	1.840	69.78	7973
	Open3D-DMP	6.25	40.39	0	-1.83	-26966.20	1.832	66.96	7981
	Hier-RTLMP-2D	1.10	5.62	14428	-2.14	-1975.79	0.250	54.86	1175
swerv_wrapper	DREAMPlace-2D	1.10	5.54	9540	-1.86	-1429.90	0.254	53.48	1092
	Open3D-Tiling	0.56	3.63	0	-1.26	-972.80	0.232	62.17	2085
	Open3D-DMP	0.56	3.46	0	-1.23	-958.01	0.234	60.49	1744
3D improvements over 2D†		51.19%↑	24.06%	100%↑	16.24%	30.84%↑	5.72%↑	-10.04%↓	-24.82%
3D-DMP improvements over 3D-Tiling		Equal	5.96%↑	Equal	7.22%↑	-4.49%↓	1.98%	3.56%↑	0.23%

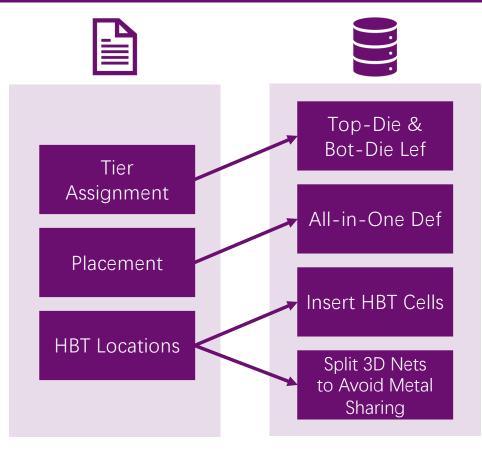

Netlist Preparation

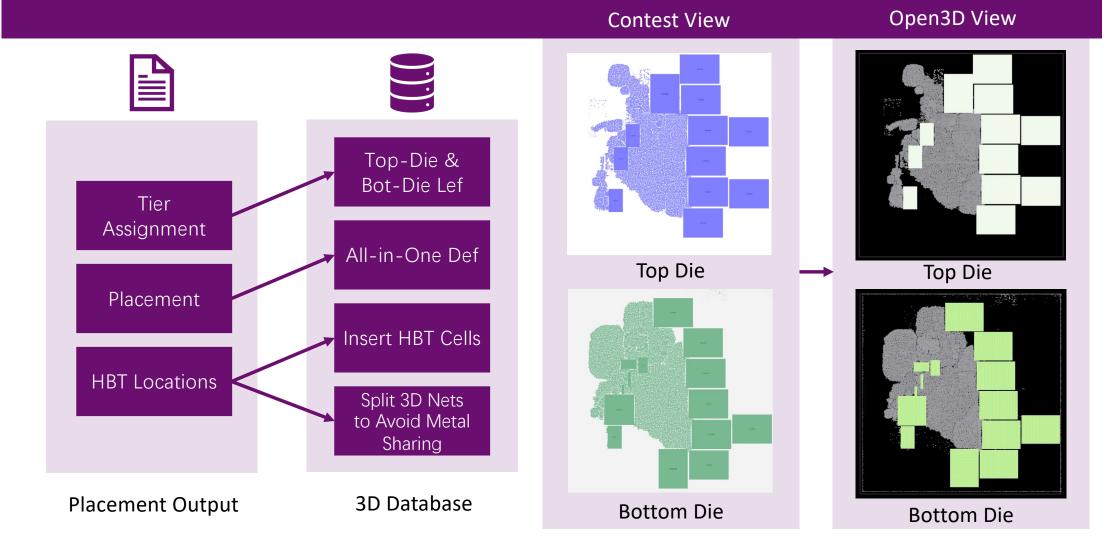

```
BUSBITCHARS "[]";
DIVIDERCHAR "/";
MACRO HBT_BOTIN
ORIGIN 0 0 ;
FOREIGN HBT_BOTIN 0 0 ;
 SIZE 7 BY 7;
 SYMMETRY X Y ;
 SITE FreePDK45_38x28_10R_NP_162NW_340 ;
 PIN TOP
   DIRECTION OUTPUT:
   USE SIGNAL ;
    LAYER metal_top_pin ;
      RECT 0.0 0.0 0.1 0.1 ;
 END TOP
 PIN BOT
   DIRECTION INPUT;
   USE SIGNAL ;
    LAYER metal_bottom_pin ;
     RECT 0.0 0.0 0.1 0.1 :
```

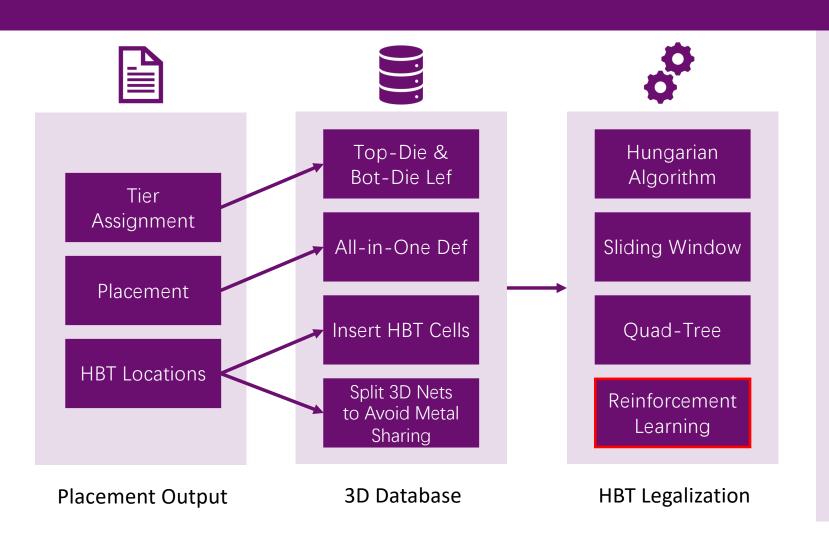
```
DIVIDERCHAR "_" ;
BUSBITCHARS "[]";
DESIGN bp_multi_top ;
UNITS DISTANCE MICRONS 2000;
DIEAREA ( 0 0 ) ( 1600000 1600000 ) :
ROW ROW_0 FreePDK45_38x28_10R_NP_162NW_340
ROW ROW_1 FreePDK45_38x28_10R_NP_162NW_340
ROW ROW 2 FreePDK45 38x28 10R NP 162NW 34
ROW ROW_3 FreePDK45_38x28_10R_NP_162NW_34
ROW ROW_4 FreePDK45_38x28_10R_NP_162NW_340
ROW ROW_5 FreePDK45_38x28_10R_NP_162NW_34
ROW ROW_6 FreePDK45_38x28_10R_NP_162NW_34
ROW ROW_7 FreePDK45_38x28_10R_NP_162NW_34
ROW ROW_8 FreePDK45_38x28_10R_NP_162NW_34
ROW ROW_9 FreePDK45_38x28_10R_NP_162NW_34
ROW ROW 10 FreePDK45 38x28 10R NP 162NW 3
ROW ROW_11 FreePDK45_38x28_10R_NP_162NW_3
ROW ROW_12 FreePDK45_38x28_10R_NP_162NW_3
ROW ROW 13 FreePDK45 38x28 10R NP 162NW 3
ROW ROW_14 FreePDK45_38x28_10R_NP_162NW_3
ROW ROW_15 FreePDK45_38x28_10R_NP_162NW_3
ROW ROW 16 FreePDK45 38x28 10R NP 162NW 3
ROW ROW_17 FreePDK45_38x28_10R_NP_162NW_34
ROW ROW_18 FreePDK45_38x28_10R_NP_162NW_3
```

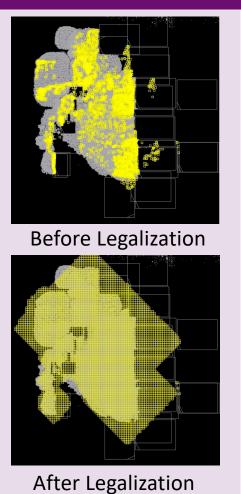



```
DIVIDERCHAR "_" ;
                                            BUSBITCHARS "[]";
DIVIDERCHAR "/";
                                            DESIGN bp_multi_top ;
MACRO HBT BOTIN
                                            UNITS DISTANCE MICRONS 2000
 CLASS CORE :
                                            DIFARFA ( 0 0 ) ( 1600000 1600
 ORIGIN 0 0;
                                            ROW ROW_0 FreePDK45_38x28_10R_
 FOREIGN HBT_BOTIN 0 0;
                                            ROW ROW_1 FreePDK45_38x28_10R_
 SIZE 7 BY 7;
 SYMMETRY X Y :
                                            ROW ROW_2 FreePDK45_38x28_10R_
 SITE FreePDK45_38x28_10R_NP_162NW_340
                                            ROW ROW_3 FreePDK45_38x28_10R_
                                            ROW ROW_4 FreePDK45_38x28_10R_
  DIRECTION OUTPUT ;
                                                                              Standard Format
                                            ROW ROW 5 FreePDK45 38x28 10R
   USE SIGNAL ;
                                            ROW ROW_6 FreePDK45_38x28_10R_
                                                                              i.e., .lef, .def, .lib
    LAYER metal_top_pin ;
                                            ROW ROW_7 FreePDK45_38x28_10R_
     RECT 0.0 0.0 0.1 0.1 ;
                                            ROW ROW_8 FreePDK45_38x28_10R_
                                            ROW ROW_9 FreePDK45_38x28_10R_
                                            ROW ROW 10 FreePDK45 38x28 10R
  DIRECTION INPUT ;
                                            ROW ROW_11 FreePDK45_38x28_10R
  USE SIGNAL :
                                            ROW ROW_12 FreePDK45_38x28_10R
                                            ROW ROW_13 FreePDK45_38x28_10R
    LAYER metal_bottom_pin ;
                                            ROW ROW 14 FreePDK45 38x28 10R
     RECT 0.0 0.0 0.1 0.1 ;
                                            ROW ROW_15 FreePDK45_38x28_10R
  MUSTJOIN TOP
                                            ROW ROW_16 FreePDK45_38x28_10R
 END BOT
                                            ROW ROW_17 FreePDK45_38x28_10R
                                            ROW ROW_18 FreePDK45_38x28_10R
                                      DieSize 0 0 41570 41557
 NumTechnologies 1
 Tech TA 1010
 LibCell N MC1 20 73 1
                                       TopDieMaxUtil 80
 Pin P1 5 26
                                      BottomDieMaxUtil 80
 LibCell N MC2 30 73 2
 Pin P1 6 32
                                      TopDieRows 0 0 41570 73 569
 Pin P2 24 37
                                      BottomDieRows 0 0 41570 73 569
                                                                              Contest Specific
 LibCell N MC3 70 73 2
 Pin P1 6 32
                                       TopDieTech TA
 Pin P2 44 36
                                                                                      Format
                                      BottomDieTech TA
 LibCell N MC4 40 73 2
 Pin P1 6 32
                                      TerminalSize 52 52
 Pin P2 24 36
 LibCell N MC5 40 73 2
                                      TerminalSpacing 52
                                      TerminalCost 10
 Pin P1 7 32
 Pin P2 30 36
 LibCell N MC6 50 73 2
                                      NumInstances 136679
 Pin P1 6 32
                                      Inst C1 MC1
 Pin P2 33 35
                                      Inst C2 MC2
 LibCell N MC7 130 73 2
                                       Inst C3 MC3
 Pin P1 6 32
                                      Inst C4 MC2
```



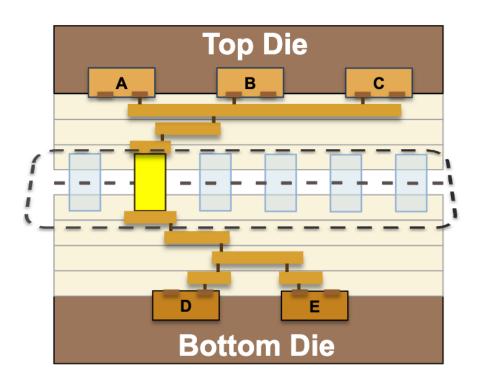



Placement Output



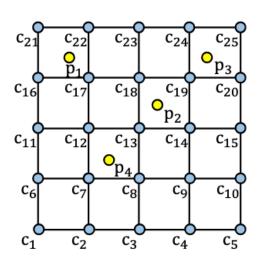
Placement Output

3D Database

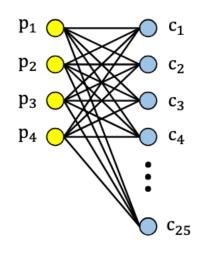


HBT Legalization

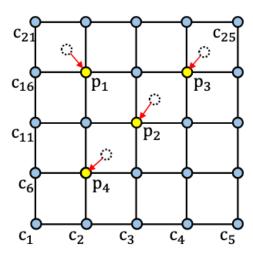
HBT Candidates



Hungarian Algorithm


Sliding Window

Quad-Tree

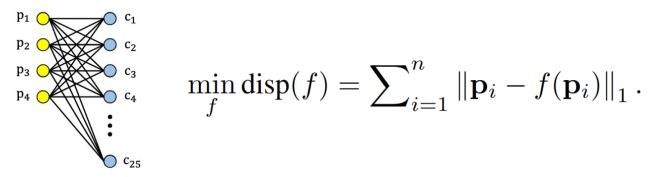

Reinforcement Learning

(b) Matching

(c) Legalization

HBT Legalization

Hungarian Algorithm


Sliding Window

Quad-Tree

Reinforcement Learning

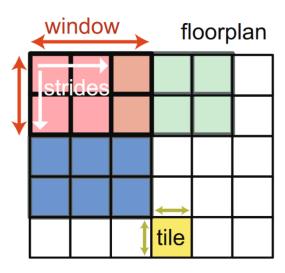
HBT Legalization

Formally, HBT Legalization is a large-scale bipartite matching problem, minimizing the total displacement.

Georgia Tech. and Synopsys adopt Hungarian algorithm to optimize the assignment^[1], with complexity $O(|P|^2 \times |C|)$, requiring hours for large cases.

[1] Pruek, et al. "Placement-Aware 3D Net-to-Pad Assignment for Array-Style Hybrid Bonding 3D ICs". ISPD 2025.

Hungarian Algorithm


Sliding Window

Quad-Tree

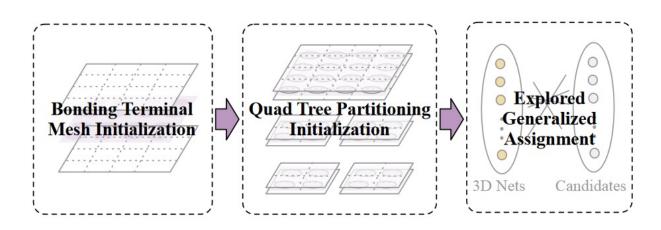
Reinforcement Learning

HBT Legalization

Georgia Tech. proposes a sliding window-based method^[2], recursively moving the window to scan the whole canvas, and perform Hungarian algorithm inside the window.

[2] Sai Pentapati, et al. "On Legalization of Die Bonding Bumps and Pads for 3D ICs". ISPD 2023.

Hungarian Algorithm

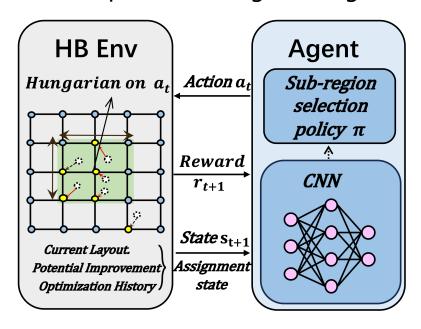

Sliding Window

Quad-Tree

Reinforcement Learning

HBT Legalization

CUHK proposes a Quadratic-tree-based method^[3], recursively partitioning the canvas into four rectangular areas and deciding assignments in a bottom-up manner.


[3] Liu, Siting, et al. "Routing-aware legal hybrid bonding terminal assignment for 3D face-to-face stacked ICs." ISPD 2024.

HBT Legalization

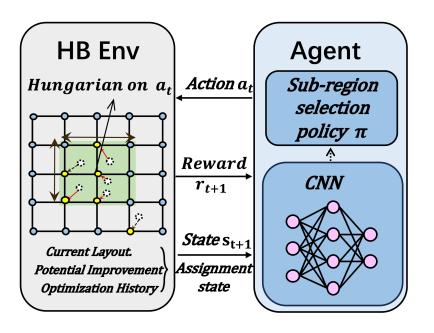
We propose a two-stage legalization procedure:

- 1) Greedy assign to a nearest legal position.
- 2) Adopt reinforcement learning (RL) to dynamically choose the window, and perform Hungarian algorithm for refinement.

Rip-up and Reassign

Hungarian Algorithm

Sliding Window


Quad-Tree

Reinforcement Learning

HBT Legalization

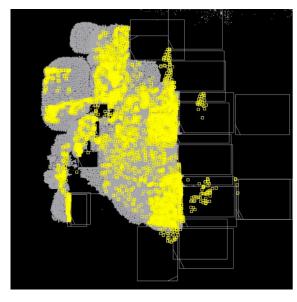
Benefit:

Unlike sliding window-based method, we only have to deal with a small proportion of regions that are critical in HBT resources.

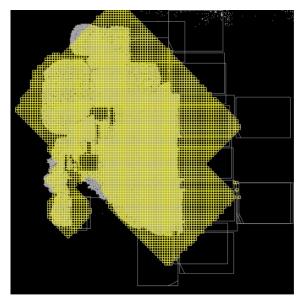
Rip-up and Reassign

Hungarian Algorithm

Sliding Window


Quad-Tree

Reinforcement Learning


HBT Legalization

Benefit:

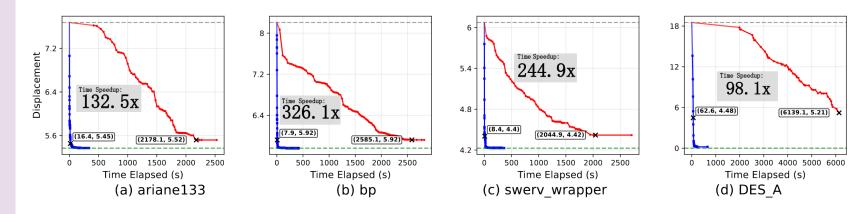
Unlike sliding window-based method, we only have to deal with a small proportion of regions that are critical in HBT resources.

Before Legalization

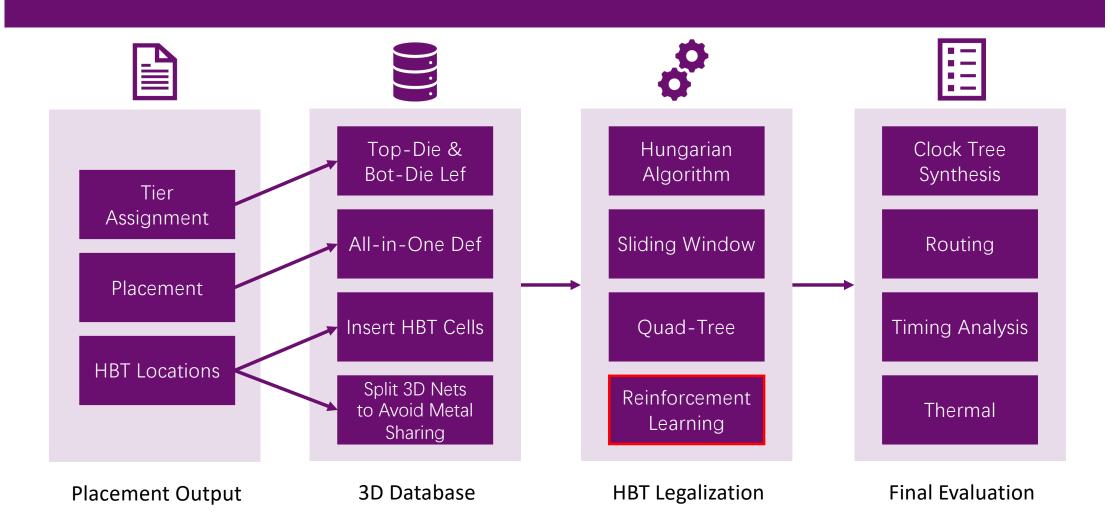
After Legalization

Hungarian Algorithm

Sliding Window


Quad-Tree

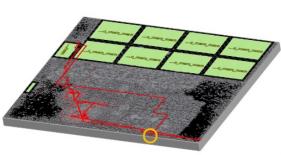
Reinforcement Learning

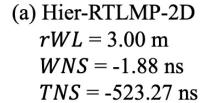

HBT Legalization

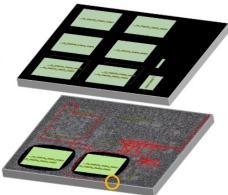
Benefit:

Unlike sliding window-based method, we only have to deal with a small proportion of regions that are critical in HBT resources.

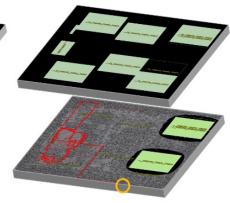
Our method introduce significant efficiency improvement of over 100x, compared to sliding window-based method, with reduced displacement.


Clock Tree Synthesis


Routing


Timing Analysis

Thermal

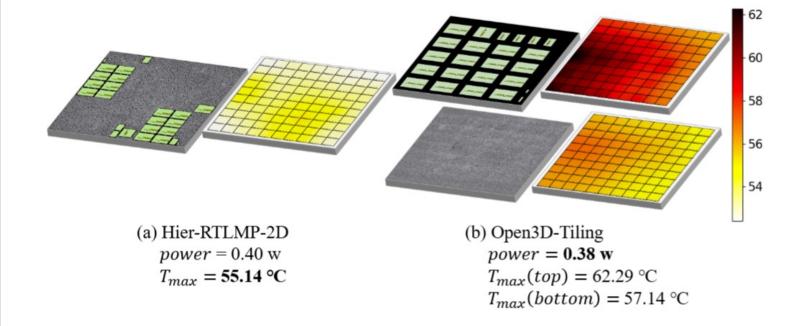

Final Evaluation

(b) Open3D-Tiling rWL = 2.40 m WNS = -1.21 ns TNS = -188.86 ns

(c) Open3D-DMP

$$rWL = 2.42 \text{ m}$$

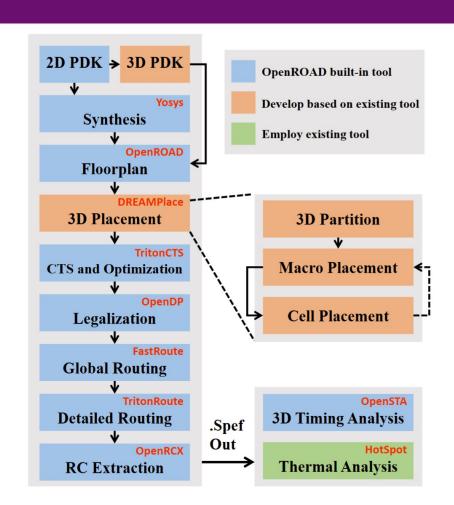
 $WNS = -0.89 \text{ ns}$
 $TNS = -108.89 \text{ ns}$



Clock Tree Synthesis

Routing

Timing Analysis


Thermal

Final Evaluation

Limitations

- Heterogeneous
- TSV consideration
- 3D power distribution network
- 3D buffering & sizing
- ...

Thank you!

Yunqi Shi

Nanjing University

Email: shiyq@lamda.nju.edu.cn

github:

arXiv:

