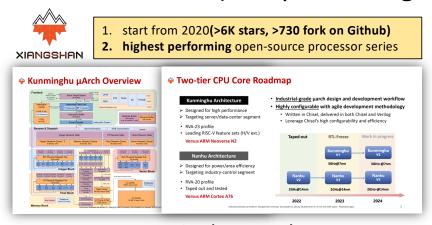
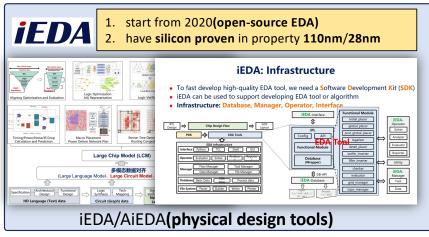

Making Open Silicon Design Everywhere

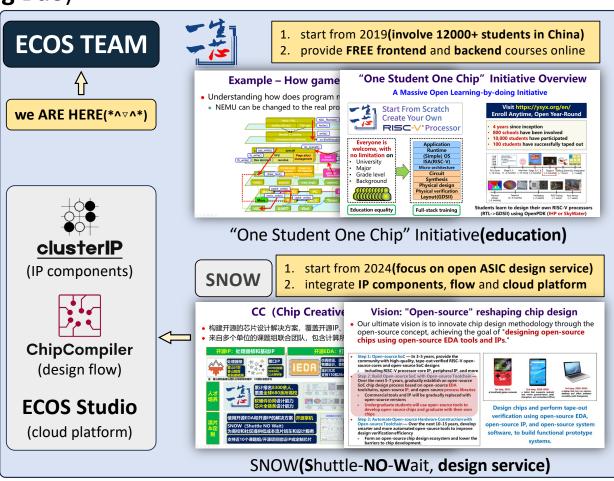
Using Cloud-based Open Agile EDA Platform

Xueyan Zhao <zhaoxueyan21b@ict.ac.cn>


ECOS Team of Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences

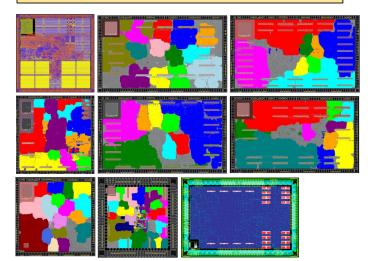
Open Source @ Siemens 2025 - Wuxi, China Oct 30-31, 2025




About us (Build Open Silicon Ecosystem!)

A real BIG team (led by Prof. Yungang Bao)

Xiangshan(processor)

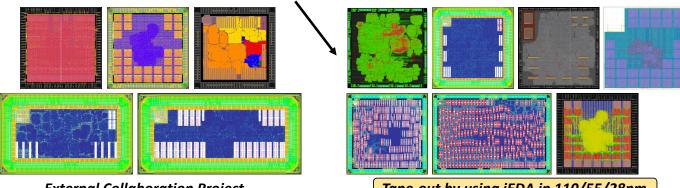


2025/11/21 Open Source @ Siemens 2025 4/27

ECOS Team: Provide ASIC Full-stack Solutions

- tape-out 10+ chips/year (IP Design/SoC Integrate/Physical Design/Package/Bring-up)
 - cover 130/110/55/40/28nm, 10K~10M instances, 100MHz ~ 1.5GHz, multiple power/clock domains
 - design open-source processors (can boot Linux) and IPs (UART, TIMER, QSPI, I2S, I2C, VGA, PSRAM...)
 - develop iEDA (iEDA just focus on PD stage now)
 - serve students and several institutions (One Student One Chip, NU. Kazakhstan, ...)
 - develop ECOS Studio (cloud platform) with Yosys+iEDA based on ICS55 Open PDK (ongoing)

Some tape-outed chips of our team:


"One Student One Chip" Initiative

The Open Silicon Technical Roadmap of ECOS Team

2021-2024: Property EDA (synthesis, floorplan) and iEDA (PD stage) mixed use

2022-2025: Develop and try open-source flow based on iEDA and SKY/IHP130/ICS55 PDK

2025-2030: Open FULL RTL2GDS flows (Yosys+iEDA+ICS55 Open PDK on ECOS Studio)

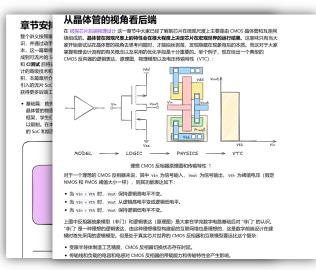
External Collaboration Project

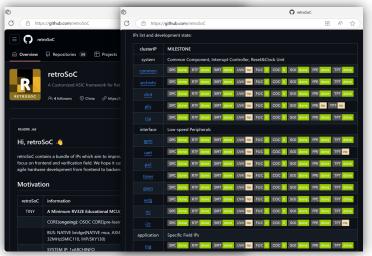
Tape-out by using iEDA in 110/55/28nm

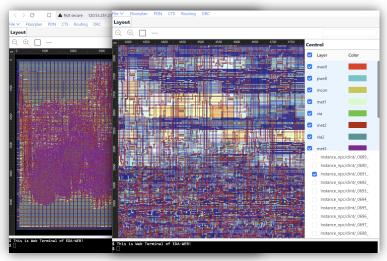
2025/11/21

Highlight

- Teach physical design with cloud platform ECOS Studio (Yosys + iEDA + ICS55)
- Introduce an education-oriented chip retroSoC tape-outed in SMIC/SKY130
- Share some of the latest information on iEDA toolchains







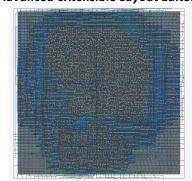
WHY we develop ECOS Studio?

- Get more students excited about open silicon design (just for fun!)
 - encourage enthusiasts share their ideas or thinkings with the community
 - help more students involved in EDA algorithm (design a simple synthesis tool~)
- Fill the gap between industry and academic (community-oriented)
 - property tools are incredibly expensive and uncontrolled (geopolitical uncertainties)
 - increasing actual demands from industry back to academic
 - new EDA algorithms from academic need a series of trials before applying to industry
- Erase performance differences from local computer (using cloud clusters!)
 - physical design tools eat too much memory and CPU resources (ToT)
 - meet different learners' needs from different countries and regions
- Provide an OPEN solution for the potential commercial marketplace

SoC Template

Select SoC template from the IP Market

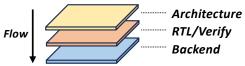
Float Panel System


Support the dragging, resizing operations and customized data

Advanced eXtensible Layout Editor

Cloud-based Agile EDA Platform

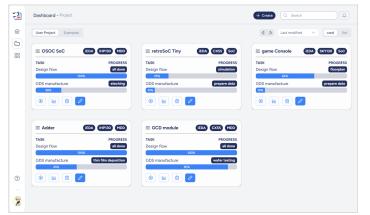
"An open-source EDA infrastructure" (support ICS55/SKY130/IHP130)



ECOS Studio

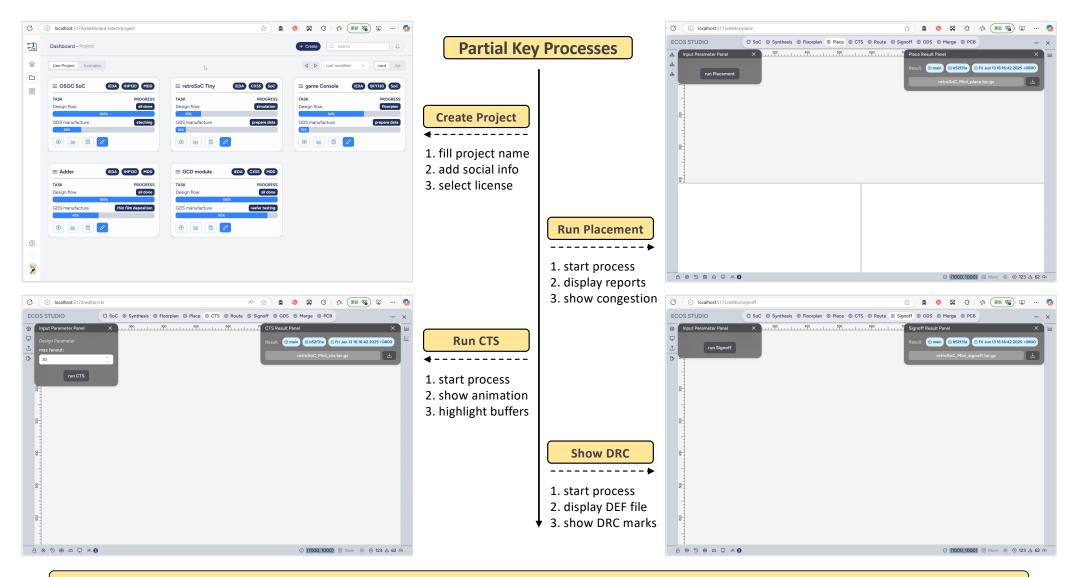
"Componentization of Data"

Real-time Collaboration*


Pipeline Mode

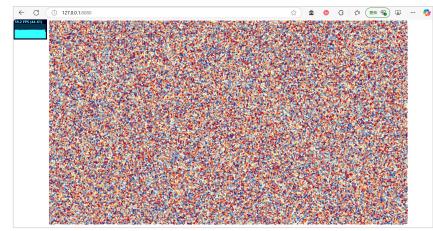
*: this feature will be released in 2025Q4

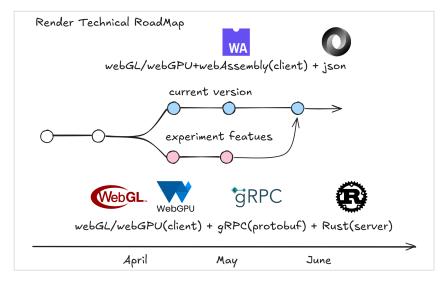
Synthesis Flow



Dashboard

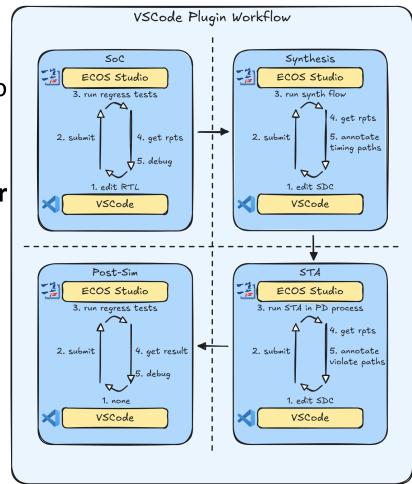
Merge to Latest Shuttle




Demonstrate physical design process provided by an undergrad from One Student One Chip Initiative (design: single-cycle processor, ~3000 cells in IHP130)

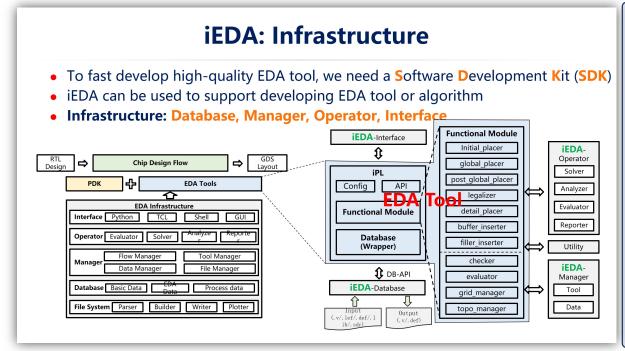
Render Engine of ECOS Studio: AXLE

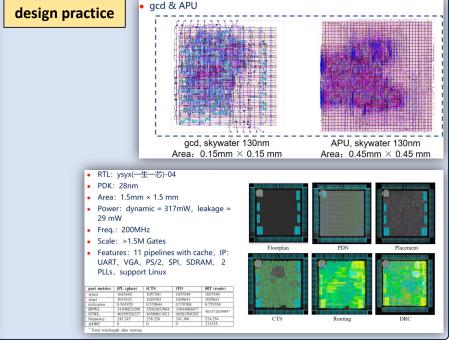
- AXLE: Advanced eXtensible Layout Editor
 - **key component** of ECOS Studio
 - support **DEF**, highlight/multilayer operations
- Performance evaluation
 - offline rendering (webGPU backend)
 - 3M graphic items(~60K gates), render 4 layers(4/11)
 - consume 3GB memory, 800M GPU, ~30FPS rate
 - opt. methods: culling, texture cache, offload to GPU
- Technical roadmap (2025Q3~Q4)
 - support LEF/DEF and GDS format
 - support floorplan / powerplan online.
 - improve perf. (support 1M gates, <2GB, >=25FPS)
 - webGL/webGPU + gRPC + Rust server
 - integrate/support Ngspice simulator



3M Graphic Items Rendering(perf. evaluation)

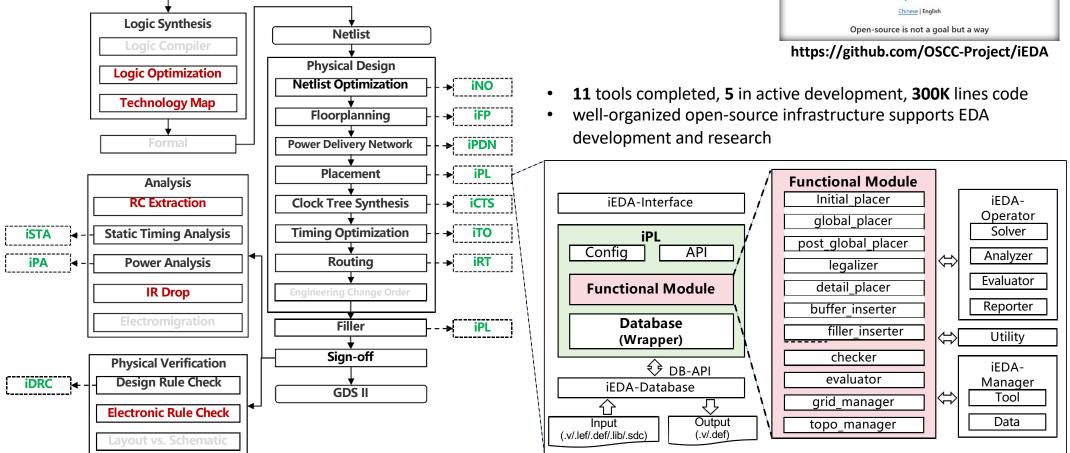
ECOS Studio: VS Code Plugin / Client


- develop VSCode plugin (2026Q2~Q3)
 - offer better editing experience for users
 - edit/submit codes (RTL, C programs...) to ECOS Studio
- Desktop client of ECOS Studio (2026Q2~Q4)
 - support **private** deployment **in local network**
 - remove limitations of rendering powered by browser
 - open more system permission to users
 - customize UI Style (background images/font/skin ...)
 - provide localhost API services (Serial, USB and Audio)
 - optimize for touch-supported devices(tablet)
 - implement specification
 - target platform: Win/MacOS/Linux (x64)
 - based on Python + Tarui 2.0 (Rust)



ECOS Studio Engine: iEDA RTL to GDS

- An open-source EDA infrastructure and tools(start from 2020)
- 11 sub tools, 400K+ lines code, test tape-out 6 times
 - project: https://ieda.oscc.cc/en
 - code: https://github.com/OSCC-Project/iEDA
- Develop ChipCompiler(Flow, support ICS55, IHP/SKY130)



iEDA/iPD: Physical Design Toolchain

RTL

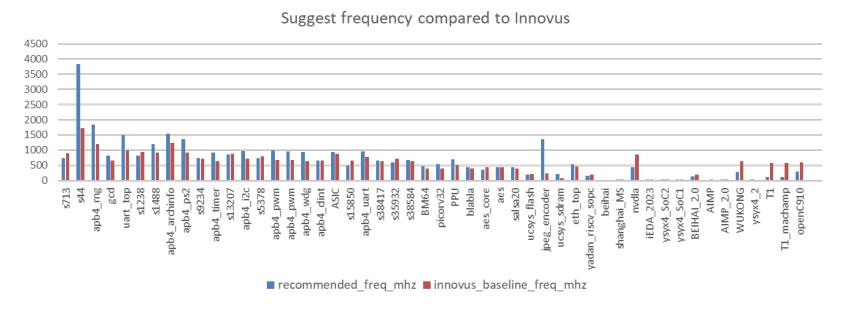
iEDA Latest Updates: Enhanced DRC Engine

- Support ALL DRC Rules in 28nm node.
- The single-pass **DRC time** is less than 3s in **100K** instances design (routing stage).
- Compared to Commercial tools, the accuracy of the major design rules is above 95%.
- With the **new version of DRC engine**, the QoR of **iRT** have been **significantly improved**.

DRC Visulization

Support Almost DRC Rules in N28:

- Cut Different Layer Spacing
- Cut EOL Spacing
- Cut Enclosure
- Cut Enclosure Edge
- Cut Spacing
- Metal Corner Filling Spacing
- Metal EOL Spacing
- Metal JogToJog Spacing

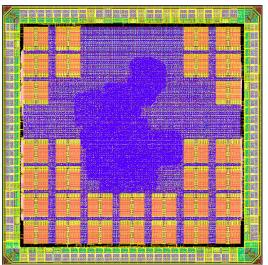

- Metal Notch Spacing
- Metal Parallel Run Length Spacing
- Metal Short
- MinHole
- MinStep
- Minimal Area

prop	missed_num	prop	incorrect_num	prop	correct_num	violation_type
0.00%	0	0.00%	0	100.00%	39	corner_fill_spacing
27.11%	7025	24.34%	6307	48.55%	12583	cut_eol_spacing
0.00%	0	0.00%	0	100.00%	163	cut_short
0.00%	0	0.46%	29	99.54%	6271	different_layer_cut_spacing
15.00%	200	2.33%	31	82.67%	1102	enclosure_edge
22.88%	6363	27.25%	7577	49.87%	13867	end_of_line_spacing
100.00%	190	0.00%	0	0.00%	0	jog_to_jog_spacing
50.00%	89	50.00%	89	0.00%	0	max_via_stack
0.11%	10	0.52%	49	99.38%	9422	metal_short
0.00%	0	0.00%	0	100.00%	1048	min_hole
0.69%	389	0.68%	384	98.63%	55510	min_step
0.76%	1988	0.88%	2322	98.36%	258642	minimum_area
5.55%	Ū	0.00%	Ō	100.00%	273	nonsufficient_metal_overlap
2.25%	359	2.26%	360	95.49%	15230	notch_spacing
1.23%	291	1.43%	339	97.34%	23067	parallel_run_length_spacing
0.00%	0	0.01%	3	99.99%	31265	same_layer_cut_spacing
3.65%	16904	3.78%	17490	92.57%	428484	Total

Compared to Commercial Tools in N28

iEDA Latest Updates: Enhanced Timing Opt. Flow

- Exploring differentiable timing-driven placement, path-based buffering and sensitivity-guided gate sizing, etc.
- We used **50** datasets, ranging in size from **10K to 4M**.
- Comparing our suggest freq. results with commercial tools, 35+
 cases show closed performance to commercial tools.


Design_name	Cells ▲ ¥	Nets [▼]	Wires [▼]
s713	135	125	1426
s44	178	128	2095
apb4_rng	195	204	2230
gcd	297	270	3733
s1238	349	290	4998
s1488	380	325	6422
apb4_archinfo	392	381	5122
apb4_ps2	515	497	6542
s9234	657	585	8592
apb4_timer	721	689	8960
s13207	727	647	8182
apb4_i2c	790	727	10248
s5378	881	774	12422
apb4_pwm	974	889	13596
apb4_wdg	1029	945	13889
apb4 clint	1069	1004	13634
ASIC	1228	796	10737
s15850	2088	1926	27941
apb4 uart	5981	5606	83268
s38417	6028	5573	85054
s35932	6375	5837	81158
s38584	7023	6586	97771
BM64	9358	9510	132076
picorv32	9430	9077	136455
PPU	9547	8895	140136
blabla	15154	15672	216427
aes core	17940	17371	310215
aes	19181	18117	325550
salsa20	21270	20432	291172
jpeg_encoder	27671	29160	366397
retrosoc_asic_cx!	30000	30000	30000
eth top	42279	38552	646875
yadan_riscv_sop	63514	31280	483369
beihai	211236	133086	2161829
shanghai_MS	268721	251772	3610024
nvdla	289344	226974	3708427
iEDA 2023	368147	335112	5132004
ysyx4 SoC2	494962	449847	6967779
ysyx4_SoC1	494962	449847	6967779
BEIHAI_2.0	582645	393308	5491501
AIMP	742210	535618	9980714
AIMP 2.0	816677	560525	9133333
-	1090820	1029515	15486068
ysyx6 WUKONG	1102663	1032718	15653639
ysyx4_2 T1	1173610	1147953	17416249
	1262053	1227098	18769036
T1_machamp	2222669	2162147	33115508
nanhu-G	2793215	2646672	42524007
openC910 T1_sandslash	3282828	2948743	52259408 79050737
	4816399	4728816	

2025/11/21 Open Source @ Siemens 2025 15/27

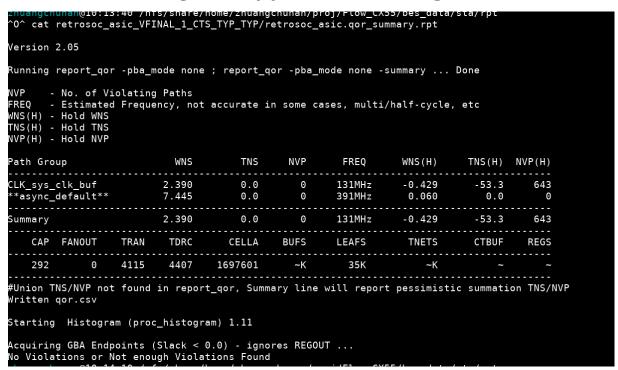
A NEW Open PDK in China: ICsprout 55nm

- ICSprout Semicond. is a Chinese foundry (founded in 2021)
 - jointly established by Zhejiang Provincial Government and ZJU
 - have advanced 12-inch CMOS 180/55nm process lines
 - 55nm-CMOS, 55nm-eFlash, 180nm-BCD
 - collaborate with universities, academia and industry in China
 - open its 55nm-CMOS PDK in 2025
 - URL: (https://github.com/openecos-projects/icsprout55-pdk)
 - MPW tape-out cost (55nm CMOS Open PDK)
 - Independent: 30~40K yuan/mm^2 (\$4,182~\$5,576/mm^2)
 - Full Mask (600mm^2): 10K yuan/mm^2 (\$1,395/mm^2)
- Bring ICSprout 55nm Open PDK into ECOS Studio
 - establish strong cooperation with ICSprout (What've we done):
 - port our designs and backend flows into ICSprout 55nm Open PDK
 - tape-out FIRST test chip on ICSprout 55nm Open PDK in June 15, 2025
 - help to try PD flow and give feedbacks to ICSprout for bugs fixing

Design: A RV32IMAC SoC(PSRAM, QSPI, UART,

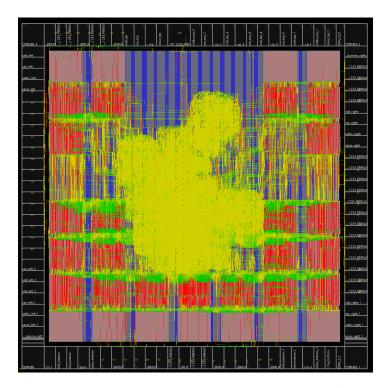
I2C, PWM, TIMER, RNG).

Size: 4mm²(128KB OCM, no PLL) **Freq:** 100MHz(external clock bypass)

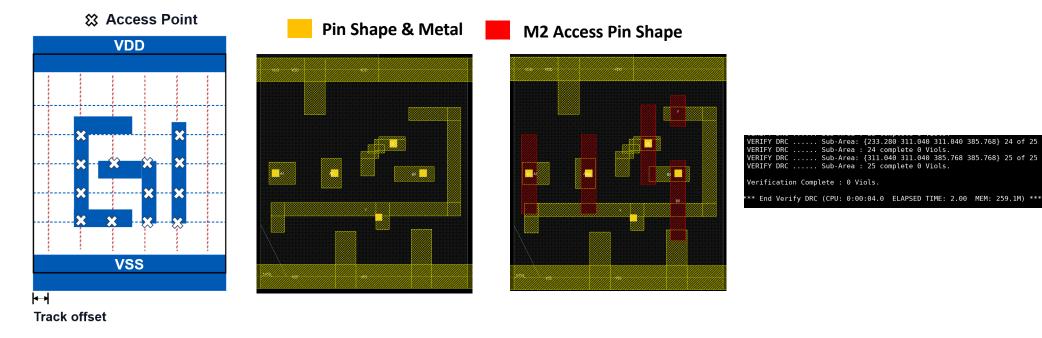

Gates: 1.517M(73,009 cells)

Power: 115.4mW(dynamic) 0.42mW(static)

develop OPEN-SOURCE PLL and DDR3 PHY based on ICSprout 55nm Open PDK(ongoing)


Designing Chips with iEDA on ICsprout 55nm

- We attempted to design a SoC (70K instances, from OSOC) on ICSprout 55nm technology in June
- DRC clean can be achieved on all metal layers except
 M1 and timing can approach convergence


MET1	MetSpc 42777		CShort 0	Totals 43846	
MET2 VTA2	1 0	0 0	0	1	П
	42778		1	43848	
End Vorify		0.00.10		D TIME. 1	

The number of DRC

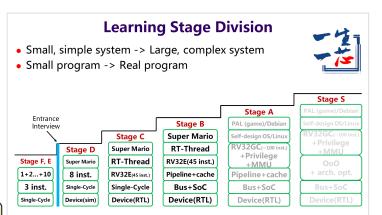
Designing Chips with iEDA on ICsprout 55nm

- M1 Pin Shapes are somewhat different from other optimized processes:
 - The M1 enclosure is difficult to be enclosed by the M1 Pin Shape metal
 - Pin access becomes a significant source of DRC issues
- Solution: Use the pre-processed M2 shape in LEF file to complete pin access
- Using this solutions we can achieve DRC clean

2025/11/21 Open Source @ Siemens 2025 18/27

Designing Chips with ECOS studio in December

- We will start a new tape-out project in December
- We will allow OSOC students and Open-Source enthusiasts to participate in this tape-out
 - The number of instances needs to be less than 100K
 - The frequency of the digital chip should be less than 100M
 - SRAM and PLL IP are working in progress
 - Initially we received **20 chips** (**8K-20K** instances) from OSOC students


Design Name	#gates	#nets	#inst	#macros	#IO	density	Freq.	WNS	TNS	RT	#DRC
stage_b_ysyx_23060170	46161	10902	13790	0	387	0.309125	100M	5.233	0	326.28	0
stage_b_ysyx_23060203	53054	11573	14748	0	387	0.322115	100M	4.899	0	320.12	0
stage_b_ysyx_23060229	49370	11837	15003	0	387	0.300443	100M	4.908	0	366.31	0
stage_b_ysyx_23060246	47717	11671	15436	0	387	0.223396	100M	5.193	0	330.83	0
stage_b_ysyx_24070003	58082	11820	16765	0	387	0.173035	100M	3.168	0	335.21	0
stage_b_ysyx_24080032	49464	10661	13745	0	387	0.316553	100M	3.903	0	325.14	0
stage b ysyx 24100012	47286	10988	14046	0	387	0.306919	100M	5.828	0	318.89	0
stage b ysyx 24110017	52414	12014	15779	0	387	0.246557	100M	5.545	0	343.54	0
stage b ysyx 25010008	52717	11489	14654	0	387	0.321606	100M	5.281	0	309.45	0
stage_b_ysyx_25010030	41986	11751	15251	0	387	0.208437	100M	3.507	0	326.11	0
stage_b_ysyx_25020037	51491	10975	14115	0	387	0.318805	100M	3.835	0	347.71	0
stage b ysyx 25040129	48055	10605	14133	0	387	0.236888	100M	6.273	0	288.64	0
stage_d_ysyx_24080018	47106	12640	15913	0	177	0.282335	100M	5.122	0	397.51	0
stage d ysyx 24090003	51573	12205	15520	0	177	0.309766	100M	3.04	0	411.68	0
stage_d_ysyx_25010009	58400	12606	16776	0	177	0.240029	100M	2.664	0	424.49	0
stage_d_ysyx_25020042	36498	10185	13498	0	177	0.215315	100M	3.911	0	328.73	0
stage_d_ysyx_25070198	49084	7643	10477	0	177	0.371986	100M	5.007	0	273.18	0
stage_d_ysyx_25080207	46038	7525	10198	0	177	0.381063	100M	5.56	0	287.3	0

Scan QR code for more details

How to bring users to ECOS Studio/ICS55 PDK

- For students from *One Student One Chip*
 - tape-out a single-cycle processor in Stage D
 - complete HW/SW, pass online assessment (OSOC tutorial)
 - complete PD flow, merge design to SoC template (ECOS Studio)
 - design is very small
 - impl. 8 instructions + axi4l, can run "Super Mario"
 - ~3848 cells, 0.011mm² in ICS55, DRC num < 10, ~100 yuan(\$14)
 - tape-out FOR FREE (for Chinese students)
 - design tutorials, labs based on ECOS Studio and ICS55 PDK
 - help 200+ undergrads to tape-out in ICS55 later this year
- For academia or individual (2026Q2~Q3)
 - support online SoC integration (powered by IP Market)
 - open source PLL and DDR3 PHY IP on ECOS Studio
 - allow users to upload verified EDA algorithm to evaluate
 - provide flexible sales mixes (Independent/Multi-Die)

Later, we'll give a brief introduction

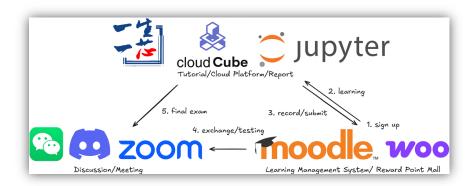
"SoC Canvas"
(SoC design component of ECOS Studio)

Open Silicon Design Course – Using ECOS Studio

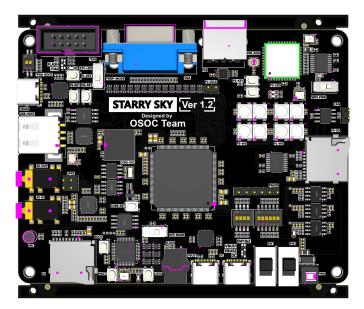
"One Student One Chip" (start from 2021.6)

- Teach students to design real chips in open PDK
- Focus on promoting students' professional abilities
- Content (real full-stack!)
 - HW/SW co-design (APP, simulator, runtime,
 OS, micro-architecture)
 - logical/physical design (formal, synthesis, PPA evaluation, RTL2GDS flow)
- Feature
 - Infrastructure (AM, NEMU, CacheSim/BrSim,
 DiffTest, SDB, SymbiYosys, Yosys, iEDA...)
 - extensive teaching experience (involved 12000+ students)
 - tape-out for free! (students who pass the online assessment)
- New version with open EDA & PDK will release in 2025 soon

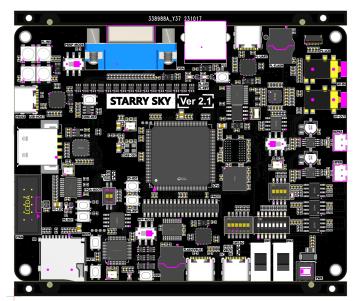
Open silicon design course (will start from 2025.9)


- Teach students to complete SoC & physical design with open EDA in ICS55 powered by ECOS Studio
- Fill the gap between academic and industry
- Content
 - transistor circuit (gate structure/simulation)
 - SoC design/integration/verification (CDC, UVM, STA, TCL, SDC...)
 - physical design (whole backend flow)
- Feature
 - Infrastructure (xschem, ngspice, KLayout, Cocotb, pyUVM, Yosys, iEDA, OpenROAD, cloud platform...)
 - establish open, flexible and community-driven teaching-learning mode
 - tape-out in ICS55 with iEDA on ECOS Studio
- Release first version in 2025Q3

Today we are HERE!


Open Silicon Design Course

- Using complete open-source toolchain
 - xschem, ngspice, Klayout (Transistor)
 - cocotb, pyuvm, SymbiYosys (SoC)
 - Yosys, OpenROAD, ICS55 open PDK (Physical design)
 - self-developed tools: HDLVim, teenySoC, ACES, AXLE, iEDA, ECOS Studio (ongoing) ...
 - ...
- Developing LMS-Centric website (servers are located in Hong Kong SAR)
 - have unified ID verification and modern UI system
 - customize an extensible, robust and easy-to-use LMS and Reward Point Mall
 - put all handout, webinar video, slides, tools, contest/marathon... in one place!
- More open and professional learning support
 - encourage rapid discussion on WeChat/Discord
 - 5~10 full-time TAs with 6~7 volunteers



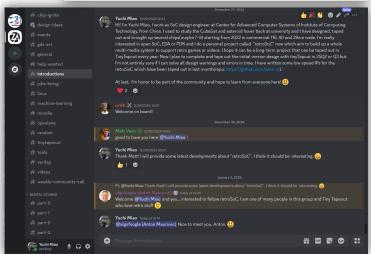
Post-silicon Education in 2025Q4/2026Q1

- Provide post-silicon education in future (bonding/packaging, PCB, bring-up, ...)
- **Shorten** development period(SDK, APP, software, product packaging ...)

- solder OSOC 3rd chip(110nm)
- 6-layers stack design(Allegro)
- officially release in 2023.4

- solder OSOC 4th chip(28nm)
- **8-layers** stack design(Allegro)
- officially release in 2023.10

What's next?


- 1. platformized, componentized
- 2. encourage MORE students involved!

- solder OSOC 5th chip(28nm)
- 4-8 layers stack design(KiCad)
- coming soon! expected in 2025.7

Design Practices: A Customized ASIC retroSoC

- An open source SoC framework(maybe ~5 years that all can be done)
 - generated by ACES(Rust SoC builder, using "Combo" config)
 - provide WiFi, MIPI, ISP, 2D/3D graphic accelerator(ongoing)...
- Focus on some stuff:
 - retro game console
 - APS-C/full-frame CMOS camera
 - ...
- Build up a community-driven develop mode
 - get instant feedbacks in super early stages
 - make continued influence
- Provide baseline for iEDA, AiEDA and openROAD
- Tape-out a real chip by using open PDK
 - long-term project
 - supported by community(ECOS Studio, Tiny Tapeout ...)

retroSoC: Technical Roadmap in 2025

- A MCU-class RV32IMAC SoC(~50K instances, demo: smart watch)(2025Q3)
- An Application-class RV64IMAC SoC(~100K instances, demo: game console)(2025Q4)

MINI

- 1. RV32I/EC
- 2. minimum design
- 3. no on-chip SRAM
- 4. wrote in Verilog
- 5. 10~20K instances
- 6. package: QFN48/64
- 7. demo: smart band

STD

- **1. RV32IMAC**
- 2. balance design
- 3. ITCM/DTCM/Cache
- 4. wrote in SV
- 5. 30~50K instances
- 6. package: QFN88
- 7. demo: smart watch

PRO

- 1. RV64IMAC
- 2. high-performance
- 3. L1/L2 Cache
- 4. wrote in SV
- 5. 50~100K instances
- 6. package: QFP100
- 7. demo: boot Linux

Major milestone

- 1. harden design(MDD)
- 2. maintain the CRT
- 3. run open EDA CI/CD
- 4. SoC integrate, design, verification(key point)
- 5. run commercial flow
- 6. write dev./use guide
- 7. switch to iterative dev. mode
- 8. auto-generated by SoC builder(teenySoC)

1. Low-speed IPs: UART, TIMER, PWM, WDG, RTC, I2C, SPI, PS2, RNG, ...

2. Memory IPs: QPI PSRAM, OPI DDR PSRAM

3. Application IPs: SDIO, DMA, VGA, DVP, USB1.1, I2S, 2D Graphic Accel.

retroSoC: Multimedia IPs Development Plan

- A community-driven project(hosted by OSOC Shenzhen Base)
 - led by internal **special R&D group**(composed of TAs and interns)
 - develop DMA, SDIO, DVP, USB, 2D Graphic Accel. etc.
 - full-stack design(IP, SoC, SW, PCB, Pack., Docs)

https://github.com/retroSoC

retroSoC: Multimedia IPs Development Plan

- PrismGPU project(https://github.com/PrismGPU) →
 - a new open-source 3D GPU
 - plan to support FULL OpenGL 1.x API(MESA)
 - first version will be integrated into retroSoC Pro
 - optimize for a Linux-capable single-core(RV64GC) SoC
 - fix-function pipeline, DMA+AXI+VGA arch.(no video codec impl.)
 - give priority to adapting **Quake**, **Need for Speed III: Hot Pursuit**
 - tape-out in 2025Q4~2026Q1
 - collate and open all learning materials(2026Q2~Q3)
 - tape-out for students in Stage A or S from One Student One Chip
 - design a practice-oriented GPU tutorial
 - CG(GAMES101) -> Graphics API(LearnOpenGL) -> Driver(WDDM)
 - design soft pipeline -> impl. device drivers(Gallium3D, QEMU)
 -> impl. Linux DRM -> write fix-function pipeline(Hardware, FPGA)
 - a tiny GPU implemented by students will be tape-outed

Moving Forwards

- Improve performance and quality of ECOS Studio
 - provide high-performance render for DEF/GDS(more interactive operations)
 - considered as a real product(user needs&experience, design flow, load/stress test...)
 - integrate some components of AiEDA and Al agent(in Floorplan, DRC fix flow) ...
- Support more foreign students to learn
 - hope >500 students enroll(~100 complete coursework) in 2025
 - more infrastructure(translation, easy-to-use LMS, clusters allocation...)
- More involved in international activities for exchanging ideas~(" '▽' ")
 - webinar, workshops/conferences(FSiC, Latch-Up, ORConf) ...
 - poster, essay, paper, talk
- Redefine cultural and creative products(Yeah, it must be right!)
 - maybe need a cute mascot (" '▽' ")
 - T-shirt, sticker, wristband, wallpaper, meme, photo, short film...
 - more offline activities

ECOS Studio/iEDA Events in 2025

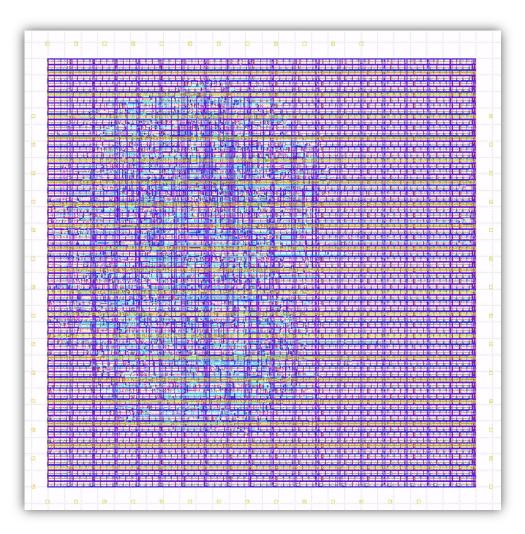
- Latch-Up 2025(talk), Santa Barbara, CA, USA, May 2-4, 2025
- RISC-V Summit Europe 2025(poster), Paris, France, May 12-15, 2025
- GROW 2025(talk), São Paulo, Brazil, June 30-July 2, 2025
- FSiC 2025(talk), IHP, Frankfurt (Oder), Germany, July 2-4, 2025
- RISC-V Summit China 2025(talk), Shanghai, China, July 17-19, 2025

 Talk: "RISC-V Chip Design Solution Based on Open-Source IP and Open-Source EDA", Biwei Xie, Associate Professor, ICT, CAS

ECOS Studio will be first RELEASED here!

Rollout time: July 16 Website: https://studio.ecoslab.com

- ORConf 2025(plan), Valencia, Spain, September 12-14, 2025
- RISC-V Summit North America 2025(plan), Santa Clara, USA, Oct. 22-23, 2025
- Open Source @Siemens China 2025(talk), Wuxi, China, October 30-31, 2025
- RISC-V Day Tokyo 2025 Autumn(plan), Ito Hall, U-Tokyo, Japan, Dec. 4, 2025



Q&A

Xueyan Zhao<zhaoxueyan21b@ict.ac.cn>

ECOS Team of Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences

Open Source @ Siemens 2025 - Wuxi, China Oct 30-31, 2025

