

An Update on OpenROAD

Zhiang Wang
Assistant Professor, Fudan University
zhiangwang@fudan.edu.cn

20251031

Biography

• Zhiang Wang (王志昂)

- Assistant Professor at Fudan University (from August)
- PostDoc at UC San Diego (2024/03 2025/07)
- PhD at UC San Diego, Advisor: Andrew Kahng (2019/09 2024/03)
- BS at University of Science and Technology of China (USTC), 2019

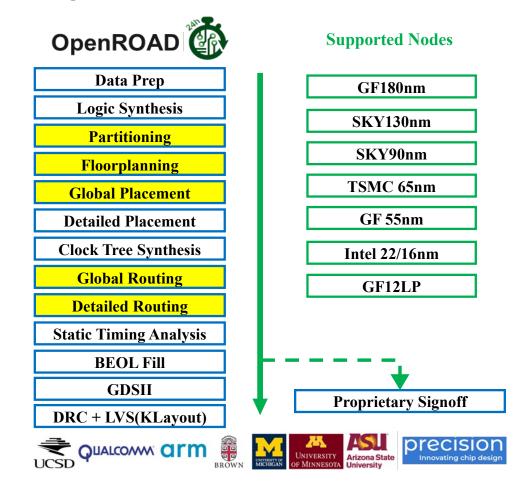
Research area:

- Digital physical design
- System Technology Co-Optimization
- Open-source EDA
- GPU-accelerated EDA

Agenda

- Research Overview
- Deep Dive of OpenROAD (My Contributions)
 - Partitioning
 - Macro Placement
 - GPU-accelerated Global Placement
 - GPU-accelerated Detailed Placement
 - GPU-accelerated Routing
 - ORFS-agent: LLM-based Flow Tuning for OpenROAD
- Future Directions and Ongoing Works

Research Overview



Open-Source EDA for Digital Electronics Designs

- OpenROAD Infrastructure
- IEEE CEDA DATC Robust Design Flow

Optimization in VLSI CAD

- Partitioning
- Floorplanning
- Placement (GPU-accelerated)
- Routing (GPU-accelerated)
- LLM-based autotuning

Contests Built on OpenROAD

OpenROAD

2025 Contests

ISPD

Performance-Driven Large Scale Global Routing

MLCAD

ReSynthAI: Physical-Aware Logic Resynthesis for Timing Optimization Using AI

ICCAD

Incremental Placement
Optimization Beyond Detailed
Placement [Problem C]

2024 Contests

ICCAD

Scalable Logic Gate Sizing Using ML
Techniques and GPU Acceleration
[Problem C]

ICLAD

GenAI Chip Hackathon @DAC

2023 Contests

ICCAD

Static IR Drop Estimation Using Machine Learning [Problem C]

Also:

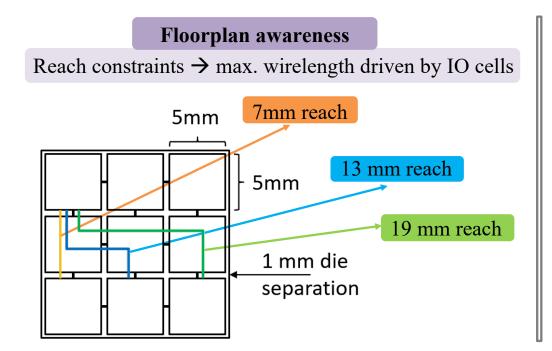
- ICCAD19 LEF/DEF Based Global Routing
- ISPD26/27 Buffering and Sizing

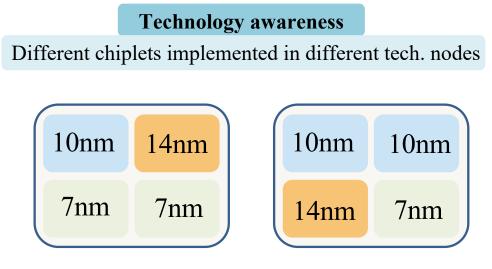
Agenda

- Research Overview
- Deep Dive of OpenROAD (My Contributions)
 - Partitioning
 - Macro Placement
 - GPU-accelerated Global Placement
 - GPU-accelerated Detailed Placement
 - GPU-accelerated Routing
 - ORFS-agent: LLM-based Flow Tuning for OpenROAD
- Future Directions and Ongoing Works

TritonPart: 21st Century Netlist Partitioner

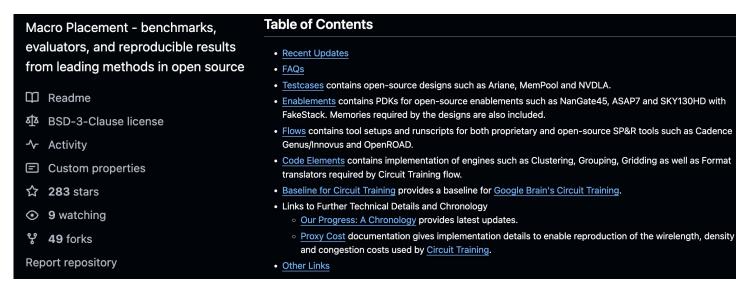
- Open-source replacement for hMETIS in all contexts
 - Integrated with OpenROAD (src/par in OpenROAD)
 - Published at ICCAD 2023
- Key features (constraints-driven partitioning engine)
 - Real-valued multi-dimensional vertex weights e.g., multi-FPGA resources
 - Multi-dimensional balance constraints e.g., satisfy multi-FPGA balance
 - Community constraints: groups of vertices that stay together during partitioning e.g., keep macros and their direct fanins/fanouts together
 - Multi-way partitioning
 - Embedding-aware partitioning e.g., placement coordinates
 - Timing-driven partitioning e.g., minimize cuts on critical paths
- Key results:
 - Improvements over hMETIS up to ~20% on some benchmarks
 - ~21X reduction of cuts on timing-critical paths compared to hMETIS and KaHyPar

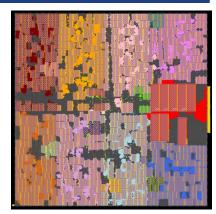



source code

Extension To Chiplet Partitioning: ChipletPart

- Cost-aware (integration with CATCH chiplet cost model from UCLA)
- Floorplan-aware (annealing-based chiplet floorplanning)
- Technology-aware (chiplet technology assignments via genetic algorithm)
- Up to 23% improvement in chiplet cost with heterogeneous technology compared to homogeneous integration



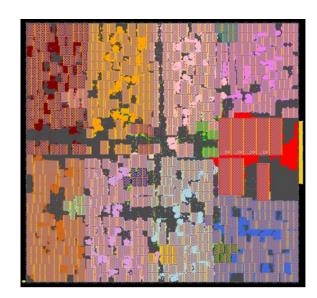

Which partitioning solution is better?

Early Design Space Exploration (Arch, RTL)

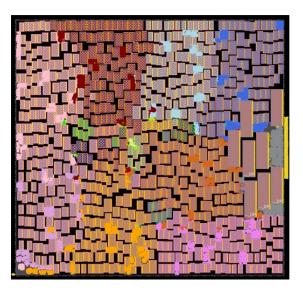
- Can we better explore architecture, RTL, and SoC floorplan design spaces?
 - Ideal: ultra-fast, yet match actual implementation
- Hier-RTLMP (src/mpl in OpenROAD): RTL- and dataflow-driven, human expert-like results

TILOS Macro Placement Benchmarks

Results for an AI Accelerator (GF12LP, 760 macros)

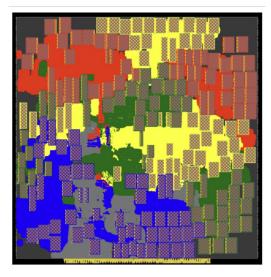


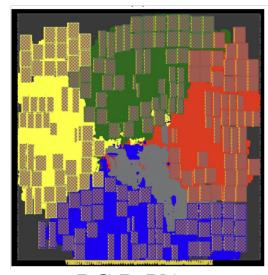
Scan me for TILOS benchmarks


Hier-RTLMP vs. Commercial Macro Placer

• Results for an AI Accelerator (GF12LP, 760 macros)

Hier-RTLMP (PostRoute)




Commercial Macro Placer (PostRoute)

Macro Placer	Std Cell Area (mm^2)	Power (mW)	WNS (ns)	TNS (ns)
Hier-RTLMP	0.160	640	-0.085	-0.417
Comm	0.165	689	-0.370	-92.246

Dataflow-Driven GPU-Accelerated RePlAce (DG-RePlAce)

OpenROAD RePlAce

DREAMPlace

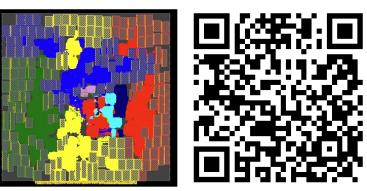
DG-RePlAce

Global Placer	WL	Power	WNS	TNS	GP (s)	TAT (s)
RePIAce	1.00	1.00	-0.123	-108.15	387	653
DREAMPlace	0.92	0.98	-0.023	-2.623	61	88
DG-RePIAce	0.90	0.97	-0.014	-0.078	32	200

Testcase: BlackParrot RISC-V (Quad-Core) (evaluator: INVS 21.1) (827K stdcells, 196 macros in GF12LP)

Speed Enables Autotuning and Better Quality

Step 1: Specify hyperparameters


Hyperparameters (specified in configspace.json)

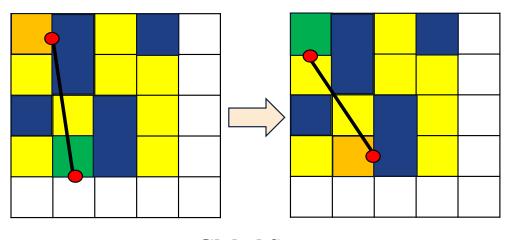
- coarsening_ratio: range = [6, 20], type = int
- max_num_level: range = [1, 2], type = int
- virtual_iter: range = [1, 8], type = int
- num_hops: range = [1, 8], type = int
- halo_width: range = [1.0, 3.0], type = float
- target_density: range = [0.5, 0.8], type = float

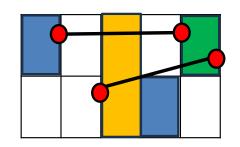
A tota	l of 29 unique	configurations	were sampled.
A tota	l of 29 runs v	were executed.	
The ru	n took 10548.9	seconds to com	plete.
# Pare	to-optimal poi	nts = 9	W
	rsmt	congestion	density
:	:	:	:
6	1.07373e+07	70.18	0.631724
11	1.10367e+07	66.1	0.503092
14	1.09998e+07	69.44	0.508124
17	1.08384e+07	70.97	0.554149
18	1.07772e+07	68.33	0.581476
22	1.08833e+07	69.77	0.558474
25	1.08008e+07	64.91	0.563338
26	1.07329e+07	68.42	0.68759
27	1.08633e+07	77.63	0.550306
Pareto	candidates:		
1 1	rsmt	congestion	density
:	:	:	:
14	1.09998e+07	69.44	0.508124
17	1.08384e+07	70.97	0.554149
18	1.07772e+07	68.33	0.581476
26	1.07329e+07	68.42	0.68759
27	1.08633e+07	77.63	0.550306

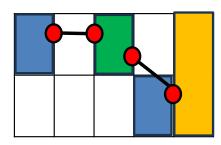
Step 2: Bayesian Opt. / NSGA-II tuner

Early evaluation is done by global router in OpenROAD

Post-route layout of RUN ID = 14

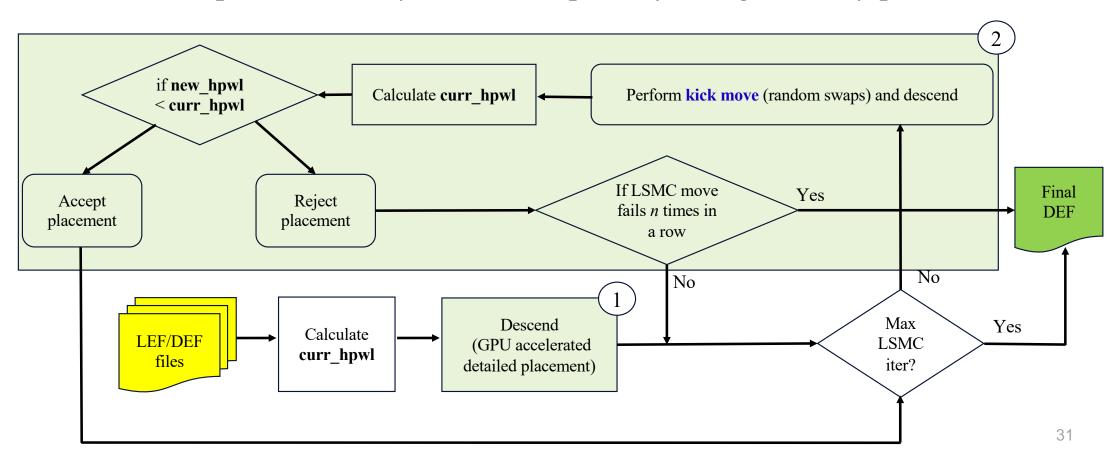



RUN_ID	WL	Power	WNS	TNS
default	0.90	0.972	-0.014	-0.078
14	0.86	0.967	-0.002	-0.007
17	0.85	0.971	-0.014	-1.048
18	0.86	0.968	-0.012	-0.216
26	0.85	0.969	-0.027	-1.794
27	0.86	0.970	-0.007	-0.139


Step 3: Run INVS P&R for Pareto candidates

GPU-Accelerated Detailed Placement Optimizer

- First known implementation of GPU-accelerated detailed placement operators that move multi-height cells cf., e.g., ABCDPlace
 - GPU-accelerated global swap
 - GPU-accelerated local reordering
 - GPU-accelerated maximum Independent set matching
- Considers constraints that help maintain routability


30X Speedup!!!

Global Swap

Local Reordering

LSMC Framework for Better Quality (GPU-DPO)

• LSMC (Large-Step Markov Chain) metaheuristic enables better exploration of solution space efficiently on GPU, especially in high-density placements

LSMC Framework for Better Quality

GPU-DPO achieves 1.7% and 3.5% lower post-detailed placement
 HPWL compared to DPO and ABCDPlace

Testcase (Utilization)	Cells	Detailed Placer	HPWL (um)	DP Time (s)	TAT (s)
AES (0.91)	15K	DPO	44823	5	10
		ABCDPlace	45412	1	4
		GPU-DPO	44226	2	4
JPEG (0.72)	61K	DPO	98092	34	42
		ABCDPlace	101537	3	10
		GPU-DPO	93665	5	13
Mempool-Group (0.41)		DPO	25089409	1138	1375
	2548K	ABCDPlace	25102382	24	77
		GPU-DPO	24963574	35	164

Testcases with multi-height cells: AES, JPEG, MemPool-Group Platform: ASAP7 Evaluator: OpenROAD

GPU-Accelerated Global Routing

Motivations:

- FastRoute (2012, default in OpenROAD) suffer inefficiency on large-scale highutilization testcases.
- Contest-driven CUGR-based routers only work on contest testcases.

An open-source global router for large-scale high-utilization real testcases!

Our Goals:

- Excellent scalability and superior speed: 50M nets in half an hour
- **High quality:** achieve better performance on high-utilization real testcases.
- Fully open-source: integrated into OpenROAD
- Easy-to-use:
 - Real global router in routing stage → better wirelength, less #DRVs
 - Early global router in placement stage → congestion/timing estimation


ORFS-agent (MLCAD Best Paper Award 2025)

- Autotunes OpenROAD flow using batch-based LLM exploration
 - Built atop Claude-3.7 (Anthropic), now we are exploring DeepSeek
- Batch exploration: runs 25 OpenROAD jobs in parallel, each with different parameters
- Training data: generates <parameter set, quality metrics> tuples (e.g., rWL, ECP)
- Learning loop: LLM observes results and **proposes better configurations** over time
- Goal: discover "optimal" flow (tool) parameters
- Git: https://github.com/ABKGroup/ORFS-Agent/tree/main
- Paper: https://vlsicad.ucsd.edu/Publications/Conferences/417/c417.pdf
- Slides: https://vlsicad.ucsd.edu/Publications/Conferences/417/c417_slides.pdf

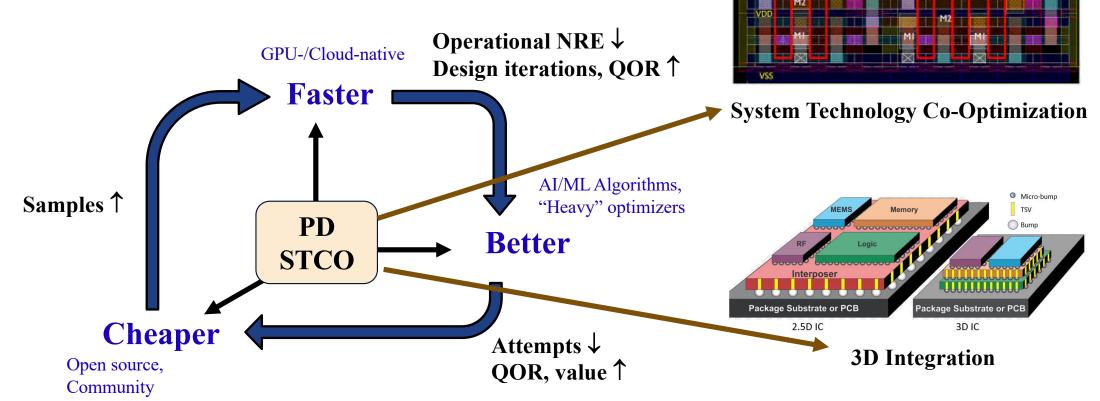
ORFS-agent vs. OR-AutoTuner

Comparison of ORFS-agent and OR-AutoTuner w.r.t. wirelength and ECP

Normalization: Results with OR-AT4 params and 375 iterations set as 1.0

- Baseline: OR-AT (4 vars, 375 iters) $\equiv 1.0$
- ORFS-agent can achieve $\approx 40\%$ fewer iters iso-QOR $\approx 13\%$ gains in WL or ECP (single-objective) (details in the paper)

Agenda



- Research Overview
- Deep Dive of OpenROAD (My Contributions)
 - Partitioning
 - Macro Placement
 - GPU-accelerated Global Placement
 - GPU-accelerated Detailed Placement
 - GPU-accelerated Routing
 - ORFS-agent: LLM-based Flow Tuning for OpenROAD
- Future Directions and Ongoing Works

Goal: Faster, Better and Cheaper EDA

- "Faster, Better, Cheaper pick any two" (it's the law!)
- Question: Can open-source EDA give us all three at once?

Physical Design for 3D IC (F2F)

Current OpenROAD flow

3D Extension

TritonPart

Multiple-constraints driven partitioning multi-tool

DG-RePlAce

GPU-accelerated dataflow-driven global placer

Co-DG-RePlAce

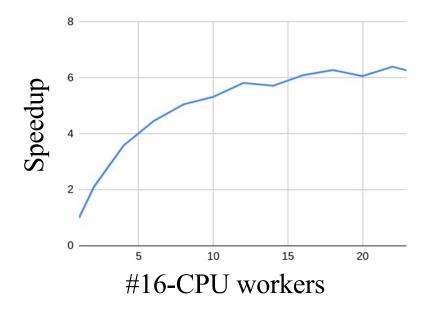
Co-optimize tier partition and instance placement (GPU-accelerated, dataflow-driven)

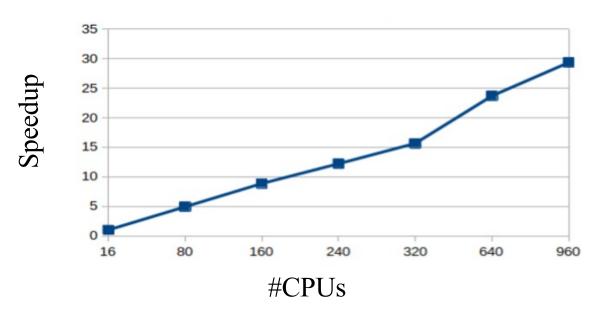
TritonRoute-WXL

State-of-the-art open-source global-detailed router

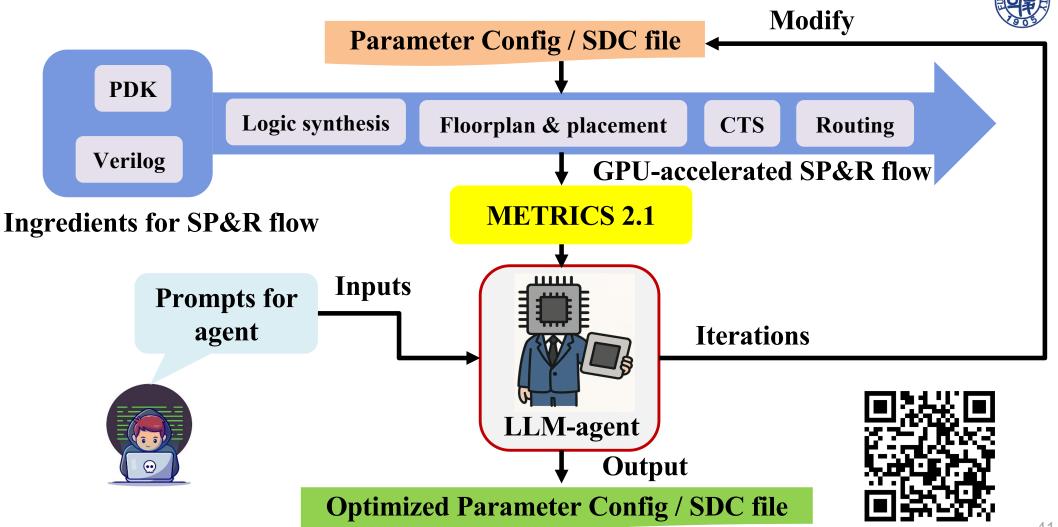
3D-TRoute (future work)

To Do: Fill in GPU-accelerated PD Flow

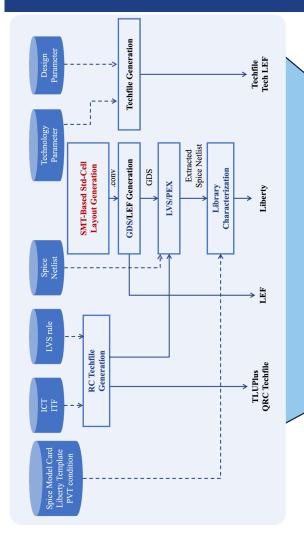



Physical Design Flo	w Academic GPU-Accelerated Tools
RTL Simulation	RTLFlow [ICPP'22]
Logic Synthesis	CULS [DAC'23]
Partitioning	HyperG [ASP-DAC'25]
Macro Placement	AutoDMP [ISPD'23]
Global Placement	DREAMPlace [DAC'19] , Xplace [DAC'22], DG-RePIAce [TCAD'25]
Detailed Placement	ABCDPlace [TCAD'20]
Clock Tree Synthesis	Missing: time-consuming #2
Global Routing	GAMER [ICCAD'21], FastGR [DATE'22], GGR [ICCAD'22]
Detailed Routing	Missing: time-consuming #1
DRC Checker	OpenDRC [DAC'23]
STA Engine	[TCAD'23a], [TCAD'23b] (From Prof. Yibo Lin)
Design Closure, Opt	Missing complex operators: may be very time-consuming 39

Distributed Computing for Physical Design



- Hardware limits the adoption of GPU-accelerated PD for extremely large designs
- Could deployment complements GPU acceleration
 - Could deployment + Open-source EDA (no license cost) → Faster and Better Solution
- Distributed incremental DR: ~100X speedup w/20 16-core workers
- Cloud-based pin access analysis: 30X speedup



LLMs Meet GPU-Accelerated Physical Design

Support System-Technology Co-Optimization (STCO)

Design Exploration Platform Cell Design / 3DIC Packaging

Std.

Cells

Characterization

Cell Generation

PDK Generation

Design

Enablement

Layout

Architectural
Exploration
Synthesis
P&R

Extraction STA. DRC

Evaluate
Design
QoR

DSO

Design

3D-OpenROAD

(Extend the P&R Engines for 3D ICs)

OR-Silicon Compiler

(GPU-accelerated physical synthesis engine)

OpenROAD-Research Platform

OR Flow Optimization

- OR-Autotuner (flow tuning based on Bayesian Optimization)
- OR-Agent (flow optimization based on LLM agents)

Open-Source Design Exploration Platform

Tool Support

PROBE3.0 Framework

OpenROAD-Research: Accelerate Open-source Ecosystem

- Platform for developing and sharing for advanced P&R engines
 - Open-source physical design for 2D/3D ICs
 - GPU-accelerated physical design or distributed computing for physical design
 - LLM/ML for physical design
- Originated from OpenROAD (Developed at UCSD)
- Part of IEEE CEDA DATC efforts (Please check our talk/paper at October 30)
- Fully open-source and free to use (BSD 3-Clause License)
- Copyrights are preserved through DCO authentication
- Led by Professor Zhiang Wang at Fudan University

Scan me for more information of OR-Research

Scan me for more information of ORFS-Research

Call for Participation: ISPD26/27 Contest

Physical Design Flow

RTL Simulation

Logic Synthesis

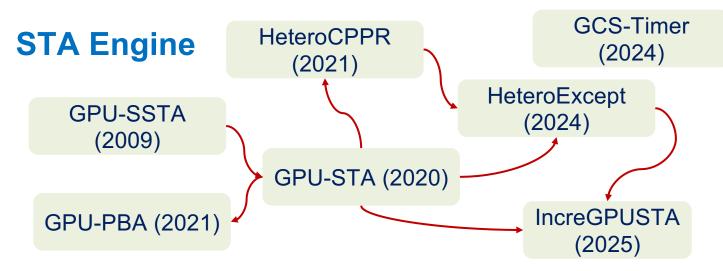
Partitioning

Macro Placement

Global Placement

Detailed Placement

Clock Tree Synthesis


Global Routing

Detailed Routing

DRC Checker

STA Engine

Design Closure, Opt

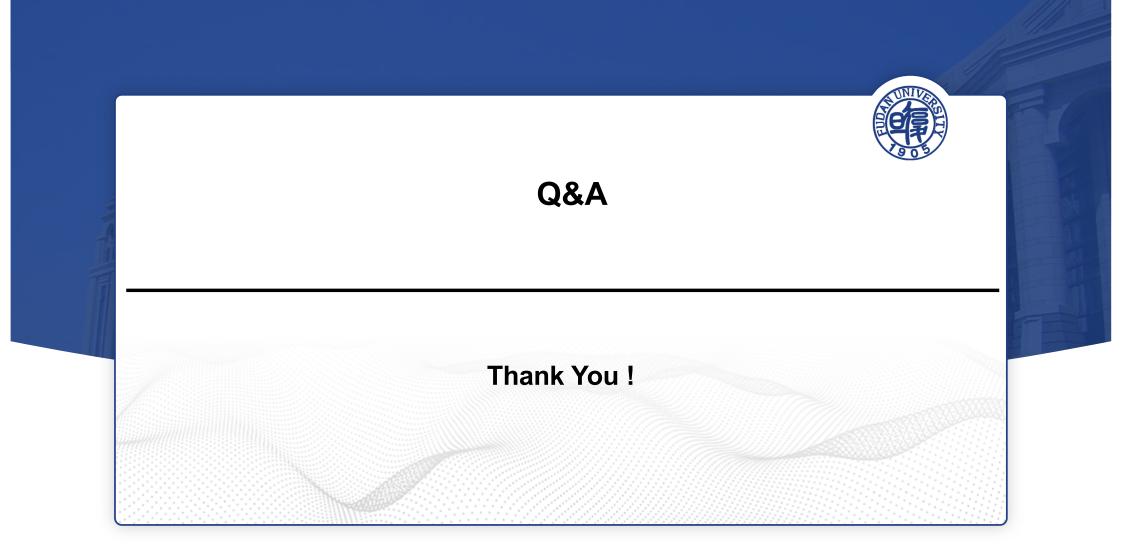
ISPD26 Contest: Post-Placement Buffering and Sizing

Organizing Team: UCSD, Fudan University, POSTECH

Co-Chairs

Dr. Yiting Liu, UCSD ABKGroup [yil375@ucsd.edu]
Prof. Zhiang Wang, Fudan University [zhiangwang@fudan.edu.cn]

Table of Contents


- Contest description: ISPD26_contest_description.pdf
- Benchmarks: The first set of released benchmarks including aes_cipher_top, jpeg_encoder and ariane.
- Platform/ASAP7: Technology platform files and libraries for the ASAP7 PDK.
- Evaluation scripts: Evaluation scripts for aes_cipher_top, jpeg_encoder and ariane.
- <u>Docker containers and submission formatting</u>: Dockerfile and commands required to maintain a consistent evaluation and submission environment can be found at the <u>README</u>.

Organizing Team

UCSD (USA)
Fudan University (China)
POSTECH (Korea)

Join Now!!!

