
Philosophy of Observability
Leveraging Cloud-Native Technologies

Richard “RichiHˮ Hartmann
1

| 2

My Background
● Senior Developer Programs Director @ Grafana Labs

● Prometheus team member CNCF graduated project)
○ PromCon lead, Prometheus Dev Summit chair

● CNCF Governing Board

● CNCF Technical Oversight Committee

● CNCF Technical Advisory Group Observability chair

● OpenMetrics founder

● OpenTelemetry member

| 3

My offer
● Built Europeʼs most modern datacenter, monitored through SNMP and

Modbus/TCP only
● Maintainer of

○ https://github.com/prometheus/snmp_exporter
○ https://github.com/RichiH/modbus_exporter
○ Others..

If you have a cool / large factory to visit and want to trade a talk

https://github.com/prometheus/snmp_exporter
https://github.com/RichiH/modbus_exporter

| 4

My Background
● Ran the backbone of an ISP for eleven years

○ Was the only person on call
○ My life & sanity depended on on-point monitoring & alerting

● Active in RIPE, IETF, DENOG, #networker etc
○ RFC to my name, changed RIPE NCCʼs IPv4 PI policies, etc.

● Prometheus transition for Germanyʼs oldest ISP, 5k devices

● Staffed worldʼs largest IRC network for more than a decade

● Run conferences & monitoring from 100s to 18k attendees
○ DENOG, DebConf, FOSDEM, CCC, GrafanaCon, PromCon

Todayʼs reality:
Disparate systems. Disparate data.

| 5

Back to the basics

Letʼs rethink this

| 6

How humanity deals with data

| 7

| 8

| 9

| 10

| 11

| 12

Humanity has optimized detailed accounts into key events
into numbers for millenia

Again and again and again

| 13

Or: Buzzwords, and their useful parts

Observability & SRE

| 14

| 15

Observability, the buzzword
● Cool new term, almost meaningless by now, what does it mean?

○ Pitfall alert: Cargo culting
○ Itʼs about changing the behaviour, not about changing the name

● “Monitoringˮ has taken on a meaning of collecting, not using data
○ One extreme: Full text indexing
○ Other extreme: Data lake

● “Observabilityˮ is about enabling humans to understand complex systems
○ Ask new questions on the fly
○ Ask why itʼs not working instead of just knowing that itʼs not

● Terms such as “Observability 2.0 ,ˮ “Observability 3.0 ,ˮ and “Observability
4.0 ,ˮ are other examples of buzzwordiness

[...] observations are [...] approximations to the truth [...] this can
be accomplished in no other way than by a suitable combination of

more observations than the number absolutely requisite for the
determination of the unknown quantities

Carl Friedrich Gauß, 1809

Observability is a measure of how well internal states of a system
can be inferred from knowledge of its external outputs.

Rudolf Emil Kálmán, 1960

| 16

| 17

Complexity
● Fake complexity, a.k.a. bad design

○ Can be reduced
● Real, system-inherent complexity

○ Can be moved (monolith vs client-server vs microservices)
○ Must be compartmentalized (service boundaries)
○ Should be distilled meaningfully (observability…)
○ Can not be reduced

| 18

Services
● Whatʼs a service?

○ Compartmentalized complexity, with an interface
○ Different owners/teams
○ Contracts define interfaces

● Why “contract :ˮ Shared agreement which MUST NOT be broken
○ Internal and external customers rely on what you build and maintain

● Other common term: layer
○ The Internet would not exist without network layering
○ Enables innovation, parallelizes human engineering

● Other examples: CPUs, hard drive, compute nodes, your lunch

| 19

Cloud-native vs client-server vs mainframe vs…
● A mainframe application and a microservices fleet are fundamentally the

same
○ You can move system-inherent complexity, but…

● Microservices broke up old service and system boundaries
○ Enabling horizontal scalability, arguably at the cost of vertical scalability

● Previous-generation tooling is designed to understand system complexity
along existing service boundaries
○ Cloud native tooling is able to deal with this increased complexity
○ NB This means previous-generation complexity is even easier to

observe

| 20

SRE
● At its core: Align incentives across the org

○ Error budgets allow devs, ops, PMs, etc. to optimize for shared benefits
● Measure it!

○ SLI Service Level Indicator: What you measure
○ SLO Service Level Objective: What you need to hit
○ SLA Service Level Agreement: When you need to pay

● Discern between different SLIs
○ Primary: service-relevant, for alerting
○ Secondary: informational, debugging, might be underlyingʼs primary

| 21

Shared understanding
● Everyone uses the same tools & dashboards

○ Shared incentive to invest into tooling
○ Pooling of institutional system knowledge
○ Shared language & understanding of services

| 22

Alerting
● Customers care about services being up, not about individual

components

Anything currently or imminently impacting customer service must be alerted
upon

But nothing(!) else

Prometheus

| 23

| 24

Prometheus 101
● Inspired by Googleʼs Borgmon
● Time series database
● Rich ecosystem, 1,000s of instrumentations & exporters
● Cloud-native default

| 25

Time series
● Time series are recorded values which change over time
● Individual events are usually merged into counters and/or histograms
● Changing values are recorded as gauges
● Typical examples

○ Requests to a webserver (counter)
○ Temperatures in a datacenter (gauge)
○ Service latency (histograms)

| 26

Cloud-native default
● Kubernetes =~ Borg
● Prometheus =~ Borgmon
● Google couldn't have run Borg without Borgmon
● Kubernetes & Prometheus are designed and written with each other in

mind

| 27

Prometheus 101
● Black-box monitoring: Looking at a service from the outside Does the

server answer to HTTP requests?
● White-box monitoring: Instrumenting code from the inside How much

time does this subroutine take?
● Every service should have its own metrics endpoint
● Hard API commitments within major versions
● New release candidate every six weeks

| 28

Main selling points
● Highly dynamic, built-in service discovery
● No hierarchical model, n-dimensional label set
● PromQL: for processing, graphing, alerting, and export
● Simple operation
● Highly efficient

| 29

Super easy to emit, parse & read
http_requests_total{env="prod",method="post",code="200"} 1027
http_requests_total{env="prod",method="post",code="400"} 3
http_requests_total{env="prod",method="post",code="500"} 12
http_requests_total{env="prod",method="get",code="200"} 20
http_requests_total{env="test",method="post",code="200"} 372
http_requests_total{env="test",method="post",code="400"} 75

| 30

PromQL
All partitions in my entire infrastructure with more than 100GB capacity that are
not mounted on root?

node_filesystem_bytes_total{mountpoint!=”/”} / 1e9 > 100

 {device="sda1", mountpoint="/home”, instance=”10.0.0.1”} 118.8
 {device="sda1", mountpoint="/home”, instance=”10.0.0.2”} 118.8
 {device="sdb1", mountpoint="/data”, instance=”10.0.0.2”} 451.2
 {device="xdvc", mountpoint="/mnt”, instance=”10.0.0.3”} 320.0

| 31

PromQL
Whatʼs the ratio of request errors across all service instances?

sum by(path) (rate(http_requests_total{status="500"}[5m])) /
 sum by(path) (rate(http_requests_total[5m]))

 {path="/status"} 0.0039
 {path="/"} 0.0011
 {path="/api/v1/topics/:topic"} 0.087
 {path="/api/v1/topics} 0.0342

| 32

Prometheus scale
● 1,000,000+ samples/second no problem on current hardware
● 200,000 samples/second/core
● 16 bytes/sample compressed to 1.36 bytes/sample
● Reliable into the tens of millions of active series

Mimir

| 33

| 34

Mimir
● For Metrics

● Prometheus → Cortex → Grafana Enterprise Metrics → Mimir

● Scales to more than 1,000,000,000 Active Series

● Blazingly fast query performance

● Hard multi-tenancy, access control, and three-way replication

● Can ingest native OpenTelemetry, DataDog, Graphite, and Influx

| 35

Mimir @ Grafana
● 1,000,000,000 Active Series - in one cluster

● 1,500 machines

● 7,000 CPU cores

● 30 TiB RAM

Loki

| 36

| 37

Loki 101
● For Logs
● Following the same label-based system as Prometheus

○ Only index what you need often, query the rest
○ “Index the labels, query the dataˮ

● Work with logs at scale, without the massive cost
○ Scalable low latency write path
○ Flexible schema on read

● Access logs with the same label sets as metrics
○ Turn logs into metrics, to make it easier & cheaper to work with them

2019-12-11T10:01:02.123456789Z {env="prod",instance=”1.1.1.1”} GET /about

Timestamp

with nanosecond precision

Content

log line

Prometheus-style Labels

key-value pairs

indexed unindexed

| 39

Loki @ Grafana Labs
● Largest user cluster: 180 TiB per day

● Queries regularly peak at 900GB/s

○ Query 10TB in 12 seconds, including complex processing of result sets

Tempo

| 40

| 41

Tempo
● For Traces

● Historic problem: Traces require extremely rich metadata for analysis

○ Expensive, slow, and mandates sampling

● Exemplars: Leverage the extracted logs & metrics

○ Exemplars work at Google scale, with the ease of Grafana
○ Native to Prometheus, Cortex, Thanos, and Loki

● Index and search by labelsets available for those who need it

● 100% compatible with OpenTelemetry Tracing, Zipkin, Jaeger

| 42

Tempo @ Grafana Labs
● 1,500,000 samples per second @ 450 MiB/s

○ 560 MiB/s peak
● 14-day retention @ 3 copies stored
● Latencies:

○ p99  2.5s
○ p90  2.3s
○ p50  1.6s

| 43

| 44

Pyroscope
● For Profiling

● Profiles

○ “How much CPU & RAM am I spending in what areas of the code?ˮ

○ “...and how does this change over time?ˮ

● Go: pprof

● Java: https://github.com/grafana/JPProf

https://github.com/grafana/JPProf

Data (and cost) savings

| 45

| 46

Logs to metrics
● Full text indexing: 10 TiB logs → 20 TiB index

● Loki: 10 TiB logs → 200 MiB index

● Logs @ Grafana 600 Byte average per line

● Metrics 1.36 Byte per metric sample

→ 99.8% reduction in storage size for first log line
100% for every follow-up log line

Bringing it together

| 48

From logs to traces

| 49

From metrics to traces

| 50

From metrics to traces

| 51

...and from traces to logs

| 52

| 53

Exemplars Loki 1.0

Loki 2.0

Grafana 7.0

Tempo

All of this is Open Source and you can run it yourself

(But we will also sell it to you happily)

| 56

Thank you!
richih@richih.org

https://chaos.social/@RichiH

https://github.com/RichiH/talks

mailto:richih@richih.org
https://chaos.social/@RichiH
https://github.com/RichiH/talks

