Quantization in vLLM From Zero to Hero

Max Dargatz

June 3rd, 2025

What is quantization?

Source: <u>https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization</u>

What is quantization?

Source: <u>https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization</u>

Why quantization matters?

• Reduce memory footprint → lower deployment costs

Why quantization matters?

- Reduce memory footprint \rightarrow lower deployment costs
- Improve inference efficiency \rightarrow faster forward passes
 - Via faster weight loading (less data to move around)
 - Via faster matrix-multiplications (lower precision compute)

Why quantization matters?

- Reduce memory footprint \rightarrow lower deployment costs
- Improve inference efficiency \rightarrow faster forward passes
 - Via faster weight loading (less data to move around)
 - Via faster matrix-multiplications (lower precision compute)
- Real-world adoption of quantized models is steadily increasing
 - \circ $\,$ Was 20%, now getting closer to 40% $\,$

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t utorial_accelerate_hf_llama_with_te.html

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t utorial_accelerate_hf_llama_with_te.html * at very long context lengths, attention changes these trade-offs

Takeaway: We really want to quantize torch.nn.Linear!

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t utorial_accelerate_hf_llama_with_te.html * at very long context lengths, attention changes these trade-offs

1) *"Load torch.nn.Linear"* – How to accelerate loading?

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load.

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. \rightarrow Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS
BFLOAT16 Tensor Core*	1,979 teraFLOPS
FP16 Tensor Core*	1,979 teraFLOPS
FP8 Tensor Core*	3,958 teraFLOPS
INT8 Tensor Core*	3,958 TOPS

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS
BFLOAT16 Tensor Core*	1,979 teraFLOPS
FP16 Tensor Core*	1,979 teraFLOPS
FP8 Tensor Core*	3,958 teraFLOPS
INT8 Tensor Core*	3,958 TOPS

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS
BFLOAT16 Tensor Core*	1,979 teraFLOPS
FP16 Tensor Core*	1,979 teraFLOPS
FP8 Tensor Core*	3,958 teraFLOPS
INT8 Tensor Core*	3,958 TOPS

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS
BFLOAT16 Tensor Core*	1,979 teraFLOPS
FP16 Tensor Core*	1,979 teraFLOPS
FP8 Tensor Core*	3,958 teraFLOPS
INT8 Tensor Core*	3,958 TOPS

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS
BFLOAT16 Tensor Core*	1,979 teraFLOPS
FP16 Tensor Core*	1,979 teraFLOPS
FP8 Tensor Core*	3,958 teraFLOPS
INT8 Tensor Core*	3,958 TOPS

→ Solution: lower precision tensor cores via **weight-and-activation quantization**.

- 1) *"Load torch.nn.Linear"* How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.
- 2) *"Compute AX+b"* How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS
BFLOAT16 Tensor Core*	1,979 teraFLOPS
FP16 Tensor Core*	1,979 teraFLOPS
FP8 Tensor Core*	3,958 teraFLOPS
INT8 Tensor Core*	3,958 TOPS

- → Solution: lower precision tensor cores via **weight-and-activation quantization**.
 - Hopper, Ada Lovelace, and newer

Ampere and older

Let's see how to **actually** quantize some LLMs.

Meet LLM-Compressor: <u>github.com/vllm-project/llm-compressor</u>

• Quantization (and pruning) for both: practitioners and researchers.

Meet LLM-Compressor: <u>github.com/vllm-project/llm-compressor</u>

- Quantization (and pruning) for both: practitioners and researchers.
- For practitioners: easy to use recipes with heavily optimized default configurations for all quantization formats supported in vLLM (INT W8A8, INT W8A16, INT W4A16, FP W8A8).

Meet LLM-Compressor: github.com/vllm-project/llm-compressor

- Quantization (and pruning) for both: practitioners and researchers.
- For practitioners: easy to use recipes with heavily optimized default configurations for all quantization formats supported in vLLM (INT W8A8, INT W8A16, INT W4A16, FP W8A8).
- For researchers: fine-grained control over quantization scales (per-channel, per-tensor, per-group), symmetric/asymmetric, with or without calibration data, activation reordering, dynamic/static activation quantization, etc.

Meet LLM-Compressor:

github.com/vllm-project/llm-compressor

- Quantization (and pruning) for both: practitioners and researchers.
- For practitioners: easy to use recipes with heavily optimized default configurations for all quantization formats supported in vLLM (INT W8A8, INT W8A16, INT W4A16, FP W8A8).
- For researchers: fine-grained control over quantization scales (per-channel, per-tensor, per-group), symmetric/asymmetric, with or without calibration data, activation reordering, dynamic/static activation quantization, etc.
- Models saved into **compressed-tensors** format (extension of safe-tensors), and directly optimized for vLLM inference kernels.

Meet LLM-Compressor: github.com/vllm-project/llm-compressor

• •	• fp8_quantize.py
1 2 3	<pre>from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor transformers import oneshot</pre>
4	
5	<pre>model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"</pre>
6	<pre>model = AutoModelForCausalLM.from_pretrained(model_stub)</pre>
7	<pre>tokenizer = AutoTokenizer.from_pretrained(model_stub)</pre>
8	
9	<pre>recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC")</pre>
10	oneshot(model=model, recipe=recipe)
11	<pre>model.save_pretrained(save_path)</pre>

Meet LLM-Compressor: <u>github.com/vllm-project/llm-compressor</u>

```
fp8_quantize.py
 1 from transformers import AutoModelForCausalLM, AutoTokenizer
 2 from llmcompressor.modifiers.quantization import QuantizationModifier
 3 from llmcompressor.transformers import oneshot
  model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
  model = AutoModelForCausalLM.from_pretrained(model_stub)
  tokenizer = AutoTokenizer.from pretrained(model stub)
 8
 9 recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC")
10 oneshot(model=model, recipe=recipe)
11 model.save pretrained(save path)
```


Meet LLM-Compressor: github.com/vllm-project/llm-compressor

• •	fp8_quantize.py
1 2 3	<pre>from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot</pre>
5 6 7	<pre>model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" model = AutoModelForCausalLM.from_pretrained(model_stub) tokenizer = AutoTokenizer.from_pretrained(model_stub)</pre>
8 9 10 11	<pre>recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC") oneshot(model=model, recipe=recipe) model.save_pretrained(save_path)</pre>
```
int8_quantize.py
 1 from transformers import AutoModelForCausalLM, AutoTokenizer
 2 from llmcompressor modifiers quantization import QuantizationModifier,
   SmoothOuantModifier
 3 from llmcompressor.transformers import oneshot
 4
 5 model stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
 6 model = AutoModelForCausalLM.from pretrained(model stub)
 7 tokenizer = AutoTokenizer.from_pretrained(model_stub)
 8
 9 ds = load_dataset("neuralmagic/LLM_compression_calibration").map(
       lambda x: {"text": tokenizer.apply_chat_template(x["messages"],
10
   add generation prompt=False, tokenize=False)}
11)
12
13 recipe = [
14
       SmoothQuantModifier(smoothing_strength=0.8),
       OuantizationModifier
15
16
           targets="Linear",
17
           scheme="W8A8",
18
           ignore=["lm_head"]
19
       )
20 ]
21
22 oneshot
23
       model=model,
24
       recipe=recipe,
25
       dataset=ds,
26
       num_calibration_samples=128
27)
28 model.save_pretrained(save_path)
```

```
int8_quantize.py
 1 from transformers import AutoModelForCausalLM, AutoTokenizer
 2 from llmcompressor modifiers quantization import QuantizationModifier,
   SmoothOuantModifier
 3 from llmcompressor.transformers import oneshot
   model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
   model = AutoModelForCausalLM.from pretrained(model stub)
   tokenizer = AutoTokenizer.from_pretrained(model_stub)
 9 ds = load_dataset("neuralmagic/LLM_compression_calibration").map(
       lambda x: {"text": tokenizer.apply_chat_template(x["messages"],
10
   add generation prompt=False, tokenize=False)}
11)
12
13 recipe = [
14
       SmoothQuantModifier(smoothing_strength=0.8),
       OuantizationModifier
15
16
           targets="Linear",
17
           scheme="W8A8",
18
           ignore=["lm_head"]
19
20 ]
21
22 oneshot
23
       model=model,
24
       recipe=recipe,
25
       dataset=ds,
26
       num_calibration_samples=128
27)
28 model.save_pretrained(save_path)
```

```
int8_quantize.py
 1 from transformers import AutoModelForCausalLM, AutoTokenizer
 2 from llmcompressor modifiers quantization import QuantizationModifier,
   SmoothOuantModifier
 3 from llmcompressor.transformers import oneshot
 4
 5 model stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
 6 model = AutoModelForCausalLM.from pretrained(model stub)
 7 tokenizer = AutoTokenizer.from_pretrained(model_stub)
 8
   ds = load_dataset("neuralmagic/LLM_compression_calibration").map(
 9
       lambda x: {"text": tokenizer.apply_chat_template(x["messages"],
10
   add generation prompt=False, tokenize=False)}
11)
12
13 recipe = [
14
       SmoothQuantModifier(smoothing_strength=0.8),
       OuantizationModifier
15
16
           targets="Linear",
           scheme="W8A8",
17
18
           ignore=["lm_head"]
19
20 ]
21
22 oneshot
23
       model=model,
24
       recipe=recipe,
25
       dataset=ds,
26
       num_calibration_samples=128
27)
28 model.save_pretrained(save_path)
```

```
int8_quantize.py
 1 from transformers import AutoModelForCausalLM, AutoTokenizer
 2 from llmcompressor modifiers quantization import QuantizationModifier,
   SmoothOuantModifier
 3 from llmcompressor.transformers import oneshot
 4
 5 model stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
 6 model = AutoModelForCausalLM.from pretrained(model stub)
 7 tokenizer = AutoTokenizer.from_pretrained(model_stub)
 8
 9 ds = load_dataset("neuralmagic/LLM_compression_calibration").map(
       lambda x: {"text": tokenizer.apply_chat_template(x["messages"],
10
   add_generation_prompt=False, tokenize=False)}
11)
12
13 recipe = [
       SmoothQuantModifier(smoothing_strength=0.8),
14
15
       OuantizationModifier
16
           targets="Linear",
17
           scheme="W8A8",
18
           ignore=["lm_head"]
19
20 ]
21
22 oneshot
23
       model=model,
24
       recipe=recipe,
25
       dataset=ds,
26
       num_calibration_samples=128
27)
28 model.save_pretrained(save_path)
```

```
int8_quantize.py
 1 from transformers import AutoModelForCausalLM, AutoTokenizer
 2 from llmcompressor modifiers quantization import QuantizationModifier,
   SmoothOuantModifier
 3 from llmcompressor.transformers import oneshot
 4
 5 model stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
 6 model = AutoModelForCausalLM.from pretrained(model stub)
 7 tokenizer = AutoTokenizer.from_pretrained(model_stub)
 8
 9 ds = load_dataset("neuralmagic/LLM_compression_calibration").map(
       lambda x: {"text": tokenizer.apply_chat_template(x["messages"],
10
   add generation prompt=False, tokenize=False)}
11)
12
13 recipe = [
14
       SmoothQuantModifier(smoothing_strength=0.8),
       OuantizationModifier
15
16
           targets="Linear",
           scheme="W8A8",
17
18
           ignore=["lm_head"]
19
        )
20 ]
21
22 oneshot(
23
       model=model,
24
       recipe=recipe,
25
       dataset=ds,
26
       num_calibration_samples=128
 27
28 model.save_pretrained(save_path)
```

```
t8_quentize py
                                               int4_quantize.py
 1 from transformers import AutoModelForCausalLM, AutoTokenizer
 2 from llmcompressor modifiers quantization import QuantizationModifier,
   SmoothOuantModifier
 3 from llmcompressor.transformers import oneshot
 4
 5 model stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
 6 model = AutoModelForCausalLM.from pretrained(model stub)
 7 tokenizer = AutoTokenizer.from_pretrained(model_stub)
 8
 9 ds = load_dataset("neuralmagic/LLM_compression_calibration").map(
10
       lambda x: {"text": tokenizer.apply_chat_template(x["messages"],
   add_generation_prompt=False, tokenize=False)}
11)
12
13 recipe = [
14
       SmoothQuantModifier(smoothing strength-0 8)
15
       OuantizationModifier
16
           targets="Linear",
                           scheme ="W4A16".
           Schomo-IIWOA0II
17
18
           ignore=["lm_head"]
19
20 ]
21
22 oneshot
23
       model=model,
24
       recipe=recipe,
25
       dataset=ds,
26
       num_calibration_samples=128
27)
28 model.save_pretrained(save_path)
```

Fine-grained control over the quantization process

•••

1	recipe = """
2	<pre>quant_stage:</pre>
3	<pre>quant_modifiers:</pre>
4	QuantizationModifier:
5	targets: ["Linear"]
6	ignore: ["lm_head"]
7	config_groups:
8	group_0:
9	weights:
10	num_bits: 4 8
11	type: int float
12	<pre>strategy: tensor channel group</pre>
13	group_size: 128
14	<pre>actorder: false weight group</pre>
15	symmetric: true false
16	input_activations:
17	num_bits: 4 8
18	type: int float
19	<pre>strategy: tensor token</pre>
20	dynamic: true false
21	000

Model = Llama-3.1-Instruct

Model = Llama-3.1-Instruct

		Recovery %	Average Score	MMLU 5-shot	MMLU CoT 0-shot	ARC-C 0-shot	GSM8k CoT 8-shot	HellaSwag 10-shot	Winogrande 5-shot	TruthfulQA 0-shot
8B	BF16	100.00	74.06	68.3	72.8	81.4	82.8	80.5	78.1	54.5
	W8A8-FP	99.31	73.55	68.0	71.6	81.2	82.0	80.0	77.7	54.3
	W8A8-INT	100.31	74.29	67.8	72.2	81.7	84.8	80.3	78.5	54.7
	W4A16-INT	98.72	73.11	66.9	71.1	80.2	82.9	79.9	78.0	52.8
70B	BF16	100.00	84.40	83.8	86.0	93.3	94.9	86.8	85.3	60.7
	W8A8-FP	99.72	84.16	83.8	85.5	93.5	94.5	86.6	84.6	60.6
	W8A8-INT	99.87	84.29	83.7	85.8	93.1	94.2	86.7	85.1	61.4
	W4A16-INT	99.53	84.00	83.6	85.6	92.8	94.4	86.3	85.5	59.8
405B	BF16	100.00	86.79	87.4	88.1	95.0	96.0	88.5	87.2	65.3
	W8A8-FP	100.12	86.89	87.5	88.1	95.0	95.8	88.5	88.0	65.3
	W8A8-INT	99.32	86.20	87.1	87.7	94.4	95.5	88.2	86.1	64.4
	W4A16-INT	99.98	86.78	87.2	87.7	95.3	96.3	88.3	87.4	65.3

Model = Llama-3.1-Instruct

		Recovery %	Average Score	MMLU 5-shot	MMLU CoT 0-shot	ARC-C 0-shot	GSM8k CoT 8-shot	HellaSwag 10-shot	Winogrande 5-shot	TruthfulQA 0-shot
8B	BF16	100.00	74.06	68.3	72.8	81.4	82.8	80.5	78.1	54.5
	W8A8-FP	99.31	73.55	68.0	71.6	81.2	82.0	80.0	77.7	54.3
	W8A8-INT	100.31	74.29	67.8	72.2	81.7	84.8	80.3	78.5	54.7
	W4A16-INT	98.72	73.11	66.9	71.1	80.2	82.9	79.9	78.0	52.8
70B	BF16	100.00	84.40	83.8	86.0	93.3	94.9	86.8	85.3	60.7
	W8A8-FP	99.72	84.16	83.8	85.5	93.5	94.5	86.6	84.6	60.6
	W8A8-INT	99.87	84.29	83.7	85.8	93.1	94.2	86.7	85.1	61.4
	W4A16-INT	99.53	84.00	83.6	85.6	92.8	94.4	86.3	85.5	59.8
405B	BF16	100.00	86.79	87.4	88.1	95.0	96.0	88.5	87.2	65.3
	W8A8-FP	100.12	86.89	87.5	88.1	95.0	95.8	88.5	88.0	65.3
	W8A8-INT	99.32	86.20	87.1	87.7	94.4	95.5	88.2	86.1	64.4
	W4A16-INT	99.98	86.78	87.2	87.7	95.3	96.3	88.3	87.4	65.3

Model = Llama-3.1-Instruct

		Recovery %	Average Score	MMLU 5-shot	MMLU CoT 0-shot	ARC-C 0-shot	GSM8k CoT 8-shot	HellaSwag 10-shot	Winogrande 5-shot	TruthfulQA 0-shot
8B	BF16	100.00	74.06	68.3	72.8	81.4	82.8	80.5	78.1	54.5
	W8A8-FP	99.31	73.55	68.0	71.6	81.2	82.0	80.0	77.7	54.3
	W8A8-INT	100.31	74.29	67.8	72.2	81.7	84.8	80.3	78.5	54.7
	W4A16-INT	98.72	73.11	66.9	71.1	80.2	82.9	79.9	78.0	52.8
70B	BF16	100.00	84.40	83.8	86.0	93.3	94.9	86.8	85.3	60.7
	W8A8-FP	99.72	84.16	83.8	85.5	93.5	94.5	86.6	84.6	60.6
	W8A8-INT	99.87	84.29	83.7	85.8	93.1	94.2	86.7	85.1	61.4
	W4A16-INT	99.53	84.00	83.6	85.6	92.8	94.4	86.3	85.5	59.8
405B	BF16	100.00	86.79	87.4	88.1	95.0	96.0	88.5	87.2	65.3
	W8A8-FP	100.12	86.89	87.5	88.1	95.0	95.8	88.5	88.0	65.3
	W8A8-INT	99.32	86.20	87.1	87.7	94.4	95.5	88.2	86.1	64.4
	W4A16-INT	99.98	86.78	87.2	87.7	95.3	96.3	88.3	87.4	65.3

Model = Llama-3.1-Instruct

		Recovery %	Average Score	MMLU 5-shot	MMLU CoT 0-shot	ARC-C 0-shot	GSM8k CoT 8-shot	HellaSwag 10-shot	Winogrande 5-shot	TruthfulQA 0-shot
8B	BF16	100.00	74.06	68.3	72.8	81.4	82.8	80.5	78.1	54.5
	W8A8-FP	99.31	73.55	68.0	71.6	81.2	82.0	80.0	77.7	54.3
	W8A8-INT	100.31	74.29	67.8	72.2	81.7	84.8	80.3	78.5	54.7
	W4A16-INT	98.72	73.11	66.9	71.1	80.2	82.9	79.9	78.0	52.8
70B	BF16	100.00	84.40	83.8	86.0	93.3	94.9	86.8	85.3	60.7
	W8A8-FP	99.72	84.16	83.8	85.5	93.5	94.5	86.6	84.6	60.6
	W8A8-INT	99.87	84.29	83.7	85.8	93.1	94.2	86.7	85.1	61.4
	W4A16-INT	99.53	84.00	83.6	85.6	92.8	94.4	86.3	85.5	59.8
405B	BF16	100.00	86.79	87.4	88.1	95.0	96.0	88.5	87.2	65.3
	W8A8-FP	100.12	86.89	87.5	88.1	95.0	95.8	88.5	88.0	65.3
	W8A8-INT	99.32	86.20	87.1	87.7	94.4	95.5	88.2	86.1	64.4
	W4A16-INT	99.98	86.78	87.2	87.7	95.3	96.3	88.3	87.4	65.3

Model = Llama-3.1-Instruct

	Academic Benchmarks (Open LLM Leaderboard V2)								2)	Real-World Benchmarks				
		Recovery %	Average Score	IFEval 0-shot	BBH 3-shot	Math lvl 5 4-shot	GPQA 0-shot	MuSR 0-shot	MMLU-Pro 5-shot	Arena-Hard Win-Rate	HumanEval pass@1	HumanEval+ pass@1	RULER Score	
8B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 101.2 101.5 96.1	27.6 27.9 28.0 26.5	77.8 77.2 77.9 76.3	30.1 29.6 30.9 28.9	15.7 16.5 15.5 14.8	3.7 5.7 5.4 4.1	7.6 7.5 7.6 6.3	30.8 31.2 30.9 28.8	25.8 26.8 27.2 24.0	67.3 67.3 67.1 67.1	60.7 61.3 60.0 59.1	82.8 82.8 82.8 81.1	
70B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 100.0 97.3 97.4	41.7 41.7 40.5 40.6	86.4 87.6 86.6 85.7	55.8 54.9 55.2 55.0	26.1 28.0 23.9 24.4	15.4 14.6 13.6 13.8	18.1 17.2 16.8 17.2	48.1 47.7 47.1 47.2	57.0 57.7 57.0 56.3	79.7 80.0 78.7 80.5	74.8 75.0 74.0 74.2	83.3 83.0 82.5 82.2	
405B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 99.9 98.3 98.9	48.7 48.7 47.9 48.2	87.7 86.8 86.9 88.0	67.0 67.1 66.7 67.5	38.9 38.8 35.8 37.6	19.5 18.9 20.4 17.5	19.5 20.8 19.2 19.4	59.7 59.4 58.4 59.3	67.4 66.9 64.6 66.5	86.8 87.0 86.9 85.1	80.1 81.0 80.4 78.9		

Model = Llama-3.1-Instruct

		Academic Benchmarks (Open LLM Leaderboard V2)								Real-World Benchmarks				
		Recovery %	Average Score	IFEval 0-shot	BBH 3-shot	Math lvl 5 4-shot	GPQA 0-shot	MuSR 0-shot	MMLU-Pro 5-shot	Arena-Hard Win-Rate	HumanEval pass@1	HumanEval+ pass@1	RULER Score	
8B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 101.2 101.5 96.1	27.6 27.9 28.0 26.5	77.8 77.2 77.9 76.3	30.1 29.6 30.9 28.9	15.7 16.5 15.5 14.8	3.7 5.7 5.4 4.1	7.6 7.5 7.6 6.3	30.8 31.2 30.9 28.8	25.8 26.8 27.2 24.0	67.3 67.3 67.1 67.1	60.7 61.3 60.0 59.1	82.8 82.8 82.8 81.1	
70B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 100.0 97.3 97.4	41.7 41.7 40.5 40.6	86.4 87.6 86.6 85.7	55.8 54.9 55.2 55.0	26.1 28.0 23.9 24.4	15.4 14.6 13.6 13.8	18.1 17.2 16.8 17.2	48.1 47.7 47.1 47.2	57.0 57.7 57.0 56.3	79.7 80.0 78.7 80.5	74.8 75.0 74.0 74.2	83.3 83.0 82.5 82.2	
405B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 99.9 98.3 98.9	48.7 48.7 47.9 48.2	87.7 86.8 86.9 88.0	67.0 67.1 66.7 67.5	38.9 38.8 35.8 37.6	19.5 18.9 20.4 17.5	19.5 20.8 19.2 19.4	59.7 59.4 58.4 59.3	67.4 66.9 64.6 66.5	86.8 87.0 86.9 85.1	80.1 81.0 80.4 78.9	- - -	

Model = Llama-3.1-Instruct

	Academic Benchmarks (Open LLM Leaderboard V2)								(2)	Real-World Benchmarks			
		Recovery %	Average Score	IFEval 0-shot	BBH 3-shot	Math lvl 5 4-shot	GPQA 0-shot	MuSR 0-shot	MMLU-Pro 5-shot	Arena-Hard Win-Rate	HumanEval pass@1	HumanEval+ pass@1	RULER Score
8B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 101.2 101.5 96.1	27.6 27.9 28.0 26.5	77.8 77.2 77.9 76.3	30.1 29.6 30.9 28.9	15.7 16.5 15.5 14.8	3.7 5.7 5.4 4.1	7.6 7.5 7.6 6.3	30.8 31.2 30.9 28.8	25.8 26.8 27.2 24.0	67.3 67.3 67.1 67.1	60.7 61.3 60.0 59.1	82.8 82.8 82.8 81.1
70B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 100.0 97.3 97.4	41.7 41.7 40.5 40.6	86.4 87.6 86.6 85.7	55.8 54.9 55.2 55.0	26.1 28.0 23.9 24.4	15.4 14.6 13.6 13.8	18.1 17.2 16.8 17.2	48.1 47.7 47.1 47.2	57.0 57.7 57.0 56.3	79.7 80.0 78.7 80.5	74.8 75.0 74.0 74.2	83.3 83.0 82.5 82.2
405B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 99.9 98.3 98.9	48.7 48.7 47.9 48.2	87.7 86.8 86.9 88.0	67.0 67.1 66.7 67.5	38.9 38.8 35.8 37.6	19.5 18.9 20.4 17.5	19.5 20.8 19.2 19.4	59.7 59.4 58.4 59.3	67.4 66.9 64.6 66.5	86.8 87.0 86.9 85.1	80.1 81.0 80.4 78.9	-

Model = Llama-3.1-Instruct

Academic Benchmarks (Open LLM Leaderboard V2)										Real-World Benchmarks			
		Recovery %	Average Score	IFEval 0-shot	BBH 3-shot	Math lvl 5 4-shot	GPQA 0-shot	MuSR 0-shot	MMLU-Pro 5-shot	Arena-Hard Win-Rate	HumanEval pass@1	HumanEval+ pass@1	RULER Score
8B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 101.2 101.5 96.1	27.6 27.9 28.0 26.5	77.8 77.2 77.9 76.3	30.1 29.6 30.9 28.9	15.7 16.5 15.5 14.8	3.7 5.7 5.4 4.1	7.6 7.5 7.6 6.3	30.8 31.2 30.9 28.8	25.8 26.8 27.2 24.0	67.3 67.3 67.1 67.1	60.7 61.3 60.0 59.1	82.8 82.8 82.8 81.1
70B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 100.0 97.3 97.4	41.7 41.7 40.5 40.6	86.4 87.6 86.6 85.7	55.8 54.9 55.2 55.0	26.1 28.0 23.9 24.4	15.4 14.6 13.6 13.8	18.1 17.2 16.8 17.2	48.1 47.7 47.1 47.2	57.0 57.7 57.0 56.3	79.7 80.0 78.7 80.5	74.8 75.0 74.0 74.2	83.3 83.0 82.5 82.2
405B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 99.9 98.3 98.9	48.7 48.7 47.9 48.2	87.7 86.8 86.9 88.0	67.0 67.1 66.7 67.5	38.9 38.8 35.8 37.6	19.5 18.9 20.4 17.5	19.5 20.8 19.2 19.4	59.7 59.4 58.4 59.3	67.4 66.9 64.6 66.5	86.8 87.0 86.9 85.1	80.1 81.0 80.4 78.9	- - -

Model = Llama-3.1-Instruct

			Academi	c Bench	marks (Open LLM	(2)	Real-World Benchmarks					
		Recovery %	Average Score	IFEval 0-shot	BBH 3-shot	Math lvl 5 4-shot	GPQA 0-shot	MuSR 0-shot	MMLU-Pro 5-shot	Arena-Hard Win-Rate	HumanEval pass@1	HumanEval+ pass@1	RULER Score
8B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 101.2 101.5 96.1	27.6 27.9 28.0 26.5	77.8 77.2 77.9 76.3	30.1 29.6 30.9 28.9	15.7 16.5 15.5 14.8	3.7 5.7 5.4 4.1	7.6 7.5 7.6 6.3	30.8 31.2 30.9 28.8	25.8 26.8 27.2 24.0	67.3 67.3 67.1 67.1	60.7 61.3 60.0 59.1	82.8 82.8 82.8 81.1
70B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 100.0 97.3 97.4	41.7 41.7 40.5 40.6	86.4 87.6 86.6 85.7	55.8 54.9 55.2 55.0	26.1 28.0 23.9 24.4	15.4 14.6 13.6 13.8	18.1 17.2 16.8 17.2	48.1 47.7 47.1 47.2	57.0 57.7 57.0 56.3	79.7 80.0 78.7 80.5	74.8 75.0 74.0 74.2	83.3 83.0 82.5 82.2
405B	BF16 W8A8-FP W8A8-INT W4A16-INT	100.0 99.9 98.3 98.9	48.7 48.7 47.9 48.2	87.7 86.8 86.9 88.0	67.0 67.1 66.7 67.5	38.9 38.8 35.8 37.6	19.5 18.9 20.4 17.5	19.5 20.8 19.2 19.4	59.7 59.4 58.4 59.3	67.4 66.9 64.6 66.5	86.8 87.0 86.9 85.1	80.1 81.0 80.4 78.9	-

Reasoning Performance = average score on AIME 2024, MATH-500, and GPQA-Diamond Models = DeepSeek-R1-Distill

Fresh off the press: INT4 quantized DeepSeek-R1-0528

	Recovery (%)	deepseek/DeepSeek-R1- 0528	RedHatAI/DeepSeek-R1-0528- quantized.w4a16 (this model)
AIME 2024 pass@1	98.50	88.66	87.33
MATH-500 pass@1	99.88	97.52	97.40
GPQA Diamond pass@1	101.21	79.65	80.61
Reasoning Average Score	99.82	88.61	88.45

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

Quantization plays well with VLMs as well

Larger quantized is always better than smaller unquantized

Larger quantized is always better than smaller unquantized

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

Larger quantized is always better than smaller unquantized

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

CuideLLM

github.com/neuralmagic/guidellm

What next?

 How to quantize? → LLM-Compressor https://github.com/vllm-project/llm-compressor

- https://github.com/neuralmagic/guidellm
- 3. Where to find high-quality quantized models? → Red Hat AI's Hub <u>https://huggingface.co/RedHatAI</u>
- How to deploy? → vLLM <u>https://github.com/vllm-project/vllm</u>

Some more evidence ...

Inferencing - what to consider?

Why to run the tests?

1. Capacity Planning & Hardware Utilization

We needed to know how many concurrent users our service could support on a single L40S, and how to push that GPU to its limits without running out of memory or throughput. We also compared a smaller, lighter model (Mistral 7B) to reveal any trade-offs—particularly its tendency to hallucinate more often—against the larger 24 B variants.

2. The Power (and Pitfalls) of Quantization

Quantizing a model can halve or even quarter its memory footprint, dramatically boosting throughput and concurrency. However, a naive quantization approach can introduce unacceptable accuracy loss. We highlight Red Hat's FP8-dynamic method, which trims memory use by \approx 50 % while retaining over 98 % of the full-precision model's reasoning and QA performance.

3. Quality-to-Cost & Sustainability Trade-Offs

Ultra-large models deliver top-tier accuracy but demand huge GPU budgets and deliver diminishing returns on quality per dollar. In many real-world RAG and reasoning tasks, mid-sized checkpoints strike the sweet spot—offering robust instruction-following, multi-step logic, and hallucination resistance without the prohibitive cost of 100-plus-billion-parameter giants.

Inferencing Stack for performance tests

Models deployed on an AI stack, leveraging <u>optimized models</u> from Red Hat:

- currently Mistral Small 24B in an FP8 quantized version is deployed
- Model Serving stack is based on vLLM and KServe to provide scalable deployments
- OpenShift (AI) provide the GPU integration for dedicated and shared GPU usage
- the model can be exposed through external HTTPS and cluster internal endpoints
- An external endpoint can be integrated in an API Gateway

Model Benchmarks (1/3) - General

Information

mistralai/Mistral-Small-24B-Instruct-2501 RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic mistralai/ Mistral-7B-Instruct-v0.3

Model Description		Instruction-tuned variant of Mistral-Small ("Instruct-2501")	the same "Instruct-2501" checkpoint, dynamically quantized	Instruction-tuned Mistral model (v0.3)
Model Licence		Apache License 2.0 (Huggingface Token required)	Apache License 2.0 (open)	Apache License 2.0 (Huggingface Token required)
Model Size		24 Billion params	24 Billion params	7 Billion Params
Context Length		32 768	32 768	32 768
Precision		BF16	FP8	BF16
	Model Weights	~44GiB	~22GB	~13.6GB
GPU RAM required	Reserve (Cuda Allocation, Pytorch Cache)	~3GB	~3GB	~3GB
	Left for KV-Cache*	N/A	~23GB	~31GB

*Assuming L40S NVIDIA GPUs

Model Benchmarks (2/3) - Quality

	Instruct-2501	Instruct-2501-FP8-dynamic	Mistral-7B-Instruct-v0.3
IFEval (Inst-and-Prompt Level Strict Acc, 0-shot)	73.27	73.53	54.65
BBH (Acc-Norm, 3-shot)	45.18	44.39	25.57
MMLU-Pro (Acc, 5-shot)	38.83	37.28	23.06
Average Score	52.42	51.73	19.23

Above 3 benchmarks stress the model's ability to parse open-ended instructions, perform multi-step reasoning, and generalize under few-shot prompting—exactly what you need for **RAG and Agents** that must plan, call tools, loop over results, etc.

- IFEval is pure instruction-following with no examples—your baseline for "can it do what I just told it?"
- **BBH** tests a wide variety of hard reasoning tasks in a few-shot context—your proxy for "can it chain together reasoning steps under guidance?"
- MMLU-Pro zeroes in on tougher academic/factual challenges—your yardstick for "does it still know its facts when you give it 5 examples?"
- The Average Score neatly summarizes the three into one number you can track.

Between the three models:

- Both 24B checkpoints sit at ~73 % IFEval, ~44–45 % BBH and ~37–39 % MMLU-Pro → an ≈ 52 % average
- The 7B comes in at 54.7 % IFEval, 25.6 % BBH, 23.1 % MMLU-Pro \rightarrow a 19.2 % average

The **Red Hat** quantized Mistral 24B heavily **outpaces** its little relative, while **only slightly losing** ground compared to its sibling. At the same time, the **FP8 quantization** make it a great choice when **balancing quality to infra requirements**!

Model Benchmarks (3/3) - Performance

Model	Test Strategy	Requests/ sec	Concurrent Requests	Tokens/sec
Mistral 7D Instruct v0.2	synchronous	0.37	1.0	~47.4
Mistral-7B-Instruct-V0.3	throughput (max)	10.93	176.94	~1398.9
Mistral-Small-24B-	synchronous	0.19	1.0	~24.7
Instruct-2501-FP8-dynamic	throughput (max)	8.66	209.33	~1108.6

Tokens /sec is the average number of output tokens the model emits per second under each load profile.

At **peak throughput**, the 7B model pushes out ~1 400 tokens/sec, while the quantized 24 B model does ~1 100 tokens/sec—consistent with their relative request/sec figures.

Single-Request Latency

Workload per inference: Mistral-7B (7 B params at BF16) does ~7 B matrix ops on 733 TFLOPS cores; Mistral-24B-FP8 (24 B params at FP8) does ~3× more ops on 1 466 TFLOPS cores.
 Result: Even with FP8's double-speed cores, the 24 B model's larger size makes its per-call latency ~2× that of the 7 B.

High Concurrency

- 1. **Amortized overhead:** Kernel launches, memory setup, etc., get shared across many parallel requests. **Memory efficiency:** FP8 uses half the memory, so more data stays on-chip, reducing stalls.
- 2. **Pipelined attention:** Modern kernels (e.g. FlashAttention-3) overlap compute and data movement, pushing FP8 hardware toward peak throughput.

While the Mistral 7B performs **more responsive under low load,** under heavy load, the 24B FP8 model **"catches up",** narrowing the latency gap to only ~1.3× slower at max throughput.

In summary, **at a more** than ~2.5× quality improvement, latency increases by much less which makes the quantized model a great choice!

June 3rd, 2025