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● Improve inference efficiency → faster forward passes

○ Via faster weight loading (less data to move around)
○ Via faster matrix-multiplications (lower precision compute)

● Real-world adoption of quantized models is steadily increasing  
○ Was 20%, now getting closer to 40% 
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Where does quantization fit inside an LLM?

* at very long context lengths, attention changes these trade-offs https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t
utorial_accelerate_hf_llama_with_te.html

Takeaway: We really want to quantize torch.nn.Linear!
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Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

→ Solution: lower precision tensor cores via 
weight-and-activation quantization.

Hopper, Ada Lovelace, and newer

Ampere and older



Let’s see how to actually quantize some LLMs.
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● For practitioners: easy to use recipes with heavily optimized default 

configurations for all quantization formats supported in vLLM (INT 
W8A8, INT W8A16, INT W4A16, FP W8A8).

● For researchers: fine-grained control over quantization scales 
(per-channel, per-tensor, per-group), symmetric/asymmetric, with 
or without calibration data, activation reordering, dynamic/static 
activation quantization, etc.

● Models saved into compressed-tensors format (extension of 
safe-tensors), and directly optimized for vLLM inference kernels.

http://github.com/vllm-project/llm-compressor
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int4_quantize.py

scheme =”W4A16”,



Fine-grained control over the quantization process
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… but what about accuracy?

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

Reasoning Performance = average score on AIME 2024, MATH-500, and GPQA-Diamond
Models = DeepSeek-R1-Distill

https://neuralmagic.com/blog/quantized-deepseek-r1-models-deployment-ready-reasoning-models/


Fresh off the press: INT4 quantized DeepSeek-R1-0528 

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

https://neuralmagic.com/blog/quantized-deepseek-r1-models-deployment-ready-reasoning-models/


Quantization plays well with VLMs as well
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Larger quantized is always better than smaller unquantized

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

65.8 vs 74.3 / 73.1 / 72.8

https://neuralmagic.com/blog/quantized-deepseek-r1-models-deployment-ready-reasoning-models/
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… but what about speedups?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

BF16 > W4A16

https://arxiv.org/pdf/2411.02355


… but what about speedups?
github.com/neuralmagic/guidellm

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

http://github.com/neuralmagic/guidellm
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What next?
1. How to quantize? → LLM-Compressor 

https://github.com/vllm-project/llm-compressor

2. How to benchmark? → GuideLLM 
https://github.com/neuralmagic/guidellm

3. Where to find high-quality quantized models? → Red Hat AI’s Hub 
https://huggingface.co/RedHatAI

4. How to deploy? → vLLM 
https://github.com/vllm-project/vllm

https://github.com/vllm-project/llm-compressor
https://github.com/neuralmagic/guidellm
https://huggingface.co/RedHatAI
https://github.com/vllm-project/vllm


Some more evidence …



Inferencing - what to consider?
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Why to run the tests?

1. Capacity Planning & Hardware Utilization
We needed to know how many concurrent users our service could support on a single L40S, and how to push that GPU 
to its limits without running out of memory or throughput. We also compared a smaller, lighter model (Mistral 7B) to 
reveal any trade-offs—particularly its tendency to hallucinate more often—against the larger 24 B variants.

2. The Power (and Pitfalls) of Quantization
Quantizing a model can halve or even quarter its memory footprint, dramatically boosting throughput and concurrency. 
However, a naive quantization approach can introduce unacceptable accuracy loss. We highlight Red Hat’s 
FP8-dynamic method, which trims memory use by ≈ 50 % while retaining over 98 % of the full-precision model’s 
reasoning and QA performance.

3. Quality-to-Cost & Sustainability Trade-Offs
Ultra-large models deliver top-tier accuracy but demand huge GPU budgets and deliver diminishing returns on quality 
per dollar. In many real-world RAG and reasoning tasks, mid-sized checkpoints strike the sweet spot—offering robust 
instruction-following, multi-step logic, and hallucination resistance without the prohibitive cost of 
100-plus-billion-parameter giants.



Inferencing Stack for performance tests 
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OpenDataHub (OpenShift AI)

L40S L40S

Model Serving Stack
vLLM | KServe | …

Optimized Models
Mistral-Small-24B-Instruct-2501-F

P8-dynamic
Workloads

AI Apps | 
Pipelines | 
Notebooks

ModelCar 
Repository

quay.io

Container-
based

Deployment

 Public REST endpoint
HTTPS | OpenAI compatible | 

OpenShift Route | Authentication

 internal endpoint
OpenAI compatible | Kubernetes 

Services

Models deployed on an AI stack, leveraging 
optimized models from Red Hat:

● currently Mistral Small 24B in an FP8 
quantized version is deployed 

● Model Serving stack is based on vLLM and 
KServe to provide scalable deployments

● OpenShift (AI) provide the GPU integration 
for dedicated and shared GPU usage

● the model can be exposed through external 
HTTPS and cluster internal endpoints

● An external endpoint can be integrated in an 
API Gateway

https://huggingface.co/RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic
https://huggingface.co/RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic
https://huggingface.co/RedHatAI


Model Benchmarks (1/3) - General 
Information
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mistralai/Mistral-Small-24B-
Instruct-2501

RedHatAI/Mistral-Small-24B-
Instruct-2501-FP8-dynamic

mistralai/
Mistral-7B-Instruct-v0.3

Model Description Instruction-tuned variant of Mistral-Small 
(“Instruct-2501”)

the same “Instruct-2501” checkpoint, 
dynamically quantized

Instruction-tuned Mistral 
model (v0.3)

Model Licence Apache License 2.0
(Huggingface Token required)

Apache License 2.0
(open)

Apache License 2.0
(Huggingface Token required)

Model Size 24 Billion params 24 Billion params 7 Billion Params

Context Length 32 768 32 768 32 768

Precision BF16 FP8 BF16

GPU RAM required

Model Weights ~44GiB ~22GB ~13.6GB

Reserve (Cuda 
Allocation, 

Pytorch Cache)

~3GB ~3GB ~3GB

Left for 
KV-Cache*

N/A ~23GB ~31GB

*Assuming L40S NVIDIA GPUs



Model Benchmarks (2/3) - Quality
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mistralai/Mistral-Small-24B-
Instruct-2501

RedHatAI/Mistral-Small-24B-
Instruct-2501-FP8-dynamic

mistralai/
Mistral-7B-Instruct-v0.3

IFEval (Inst-and-Prompt 
Level Strict Acc, 0-shot)

73.27 73.53 54.65

BBH (Acc-Norm, 3-shot) 45.18 44.39 25.57

MMLU-Pro (Acc, 5-shot) 38.83 37.28 23.06

Average Score 52.42 51.73 19.23

Above 3 benchmarks stress the model’s ability to parse open-ended instructions, perform multi-step reasoning, and generalize under 
few-shot prompting—exactly what you need for RAG and Agents that must plan, call tools, loop over results, etc.

● IFEval is pure instruction-following with no examples—your baseline for “can it do what I just told it?”
● BBH tests a wide variety of hard reasoning tasks in a few-shot context—your proxy for “can it chain together reasoning steps 

under guidance?”
● MMLU-Pro zeroes in on tougher academic/factual challenges—your yardstick for “does it still know its facts when you give it 5 

examples?”
● The Average Score neatly summarizes the three into one number you can track.

Between the three models:

● Both 24B checkpoints sit at ~73 % IFEval, ~44–45 % BBH and ~37–39 % MMLU-Pro → an ≈ 52 % average
● The 7B comes in at 54.7 % IFEval, 25.6 % BBH, 23.1 % MMLU-Pro → a 19.2 % average

The Red Hat quantized 
Mistral 24B heavily 
outpaces its little 

relative, while only 
slightly losing ground 
compared to its sibling. 
At the same time, the 

FP8 quantization 
make it a great choice 

when balancing 
quality to infra 
requirements!



Model Benchmarks (3/3) - Performance
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Model Test 
Strategy

Requests / 
sec

Concurrent Requests Tokens /sec

Mistral-7B-Instruct-v0.3
synchronous 0.37 1.0 ~47.4

throughput (max) 10.93 176.94 ~1 398.9

Mistral-Small-24B-
Instruct-2501-FP8-dynamic

synchronous 0.19 1.0 ~24.7

throughput (max) 8.66 209.33 ~1 108.6

While the Mistral 7B 
performs more 

responsive under low 
load, under heavy 
load, the 24B FP8 

model “catches up”, 
narrowing the latency 

gap to only ~1.3× 
slower at max 
throughput.

In summary, at a more 
than ~2.5× quality 

improvement, 
latency increases by 

much less which 
makes the quantized 
model a great choice!

Tokens /sec is the average number of output tokens the model emits per second under each load profile.

At peak throughput, the 7B model pushes out ~1 400 tokens/sec, while the quantized 24 B model does ~1 100 tokens/sec—consistent 
with their relative request/sec figures.

Single-Request Latency

● Workload per inference: Mistral-7B (7 B params at BF16) does ~7 B matrix ops on 733 TFLOPS cores; Mistral-24B-FP8 (24 B 
params at FP8) does ~3× more ops on 1 466 TFLOPS cores.
Result: Even with FP8’s double-speed cores, the 24 B model’s larger size makes its per-call latency ~2× that of the 7 B.

High Concurrency

1. Amortized overhead: Kernel launches, memory setup, etc., get shared across many parallel requests.
Memory efficiency: FP8 uses half the memory, so more data stays on-chip, reducing stalls.

2. Pipelined attention: Modern kernels (e.g. FlashAttention-3) overlap compute and data movement, pushing FP8 hardware toward 
peak throughput.
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