
Quantization in vLLM
From Zero to Hero

Eldar Kurtić

June 3rd, 2025

Max Dargatz

What is quantization?

Source: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

What is quantization?

Source: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

Why quantization matters?
● Reduce memory footprint → lower deployment costs

Why quantization matters?
● Reduce memory footprint → lower deployment costs
● Improve inference efficiency → faster forward passes

○ Via faster weight loading (less data to move around)
○ Via faster matrix-multiplications (lower precision compute)

Why quantization matters?
● Reduce memory footprint → lower deployment costs
● Improve inference efficiency → faster forward passes

○ Via faster weight loading (less data to move around)
○ Via faster matrix-multiplications (lower precision compute)

● Real-world adoption of quantized models is steadily increasing
○ Was 20%, now getting closer to 40%

Where does quantization fit inside an LLM?

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t
utorial_accelerate_hf_llama_with_te.html

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html

Where does quantization fit inside an LLM?

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t
utorial_accelerate_hf_llama_with_te.html

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html

Where does quantization fit inside an LLM?

* at very long context lengths, attention changes these trade-offs https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t
utorial_accelerate_hf_llama_with_te.html

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html

Where does quantization fit inside an LLM?

* at very long context lengths, attention changes these trade-offs https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/t
utorial_accelerate_hf_llama_with_te.html

Takeaway: We really want to quantize torch.nn.Linear!

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/te_llama/tutorial_accelerate_hf_llama_with_te.html

Where does quantization fit inside an LLM?

Where does quantization fit inside an LLM?

Where does quantization fit inside an LLM?

Where does quantization fit inside an LLM?

Where does quantization fit inside an LLM?

Where does quantization fit inside an LLM?

Where does quantization fit inside an LLM?

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

→ Solution: lower precision tensor cores via
weight-and-activation quantization.

Where does quantization fit inside an LLM?
1) “Load torch.nn.Linear” – How to accelerate loading?
- Reduce the number of bits to load. → Solution: weight quantization.

2) “Compute AX+b” – How to accelerate compute?
- Compute happens in tensor cores. We need faster tensor cores.

→ Solution: lower precision tensor cores via
weight-and-activation quantization.

Hopper, Ada Lovelace, and newer

Ampere and older

Let’s see how to actually quantize some LLMs.

Meet LLM-Compressor:
github.com/vllm-project/llm-compressor
● Quantization (and pruning) for both: practitioners and researchers.

http://github.com/vllm-project/llm-compressor

Meet LLM-Compressor:
github.com/vllm-project/llm-compressor
● Quantization (and pruning) for both: practitioners and researchers.
● For practitioners: easy to use recipes with heavily optimized default

configurations for all quantization formats supported in vLLM (INT
W8A8, INT W8A16, INT W4A16, FP W8A8).

http://github.com/vllm-project/llm-compressor

Meet LLM-Compressor:
github.com/vllm-project/llm-compressor
● Quantization (and pruning) for both: practitioners and researchers.
● For practitioners: easy to use recipes with heavily optimized default

configurations for all quantization formats supported in vLLM (INT
W8A8, INT W8A16, INT W4A16, FP W8A8).

● For researchers: fine-grained control over quantization scales
(per-channel, per-tensor, per-group), symmetric/asymmetric, with
or without calibration data, activation reordering, dynamic/static
activation quantization, etc.

http://github.com/vllm-project/llm-compressor

Meet LLM-Compressor:
github.com/vllm-project/llm-compressor
● Quantization (and pruning) for both: practitioners and researchers.
● For practitioners: easy to use recipes with heavily optimized default

configurations for all quantization formats supported in vLLM (INT
W8A8, INT W8A16, INT W4A16, FP W8A8).

● For researchers: fine-grained control over quantization scales
(per-channel, per-tensor, per-group), symmetric/asymmetric, with
or without calibration data, activation reordering, dynamic/static
activation quantization, etc.

● Models saved into compressed-tensors format (extension of
safe-tensors), and directly optimized for vLLM inference kernels.

http://github.com/vllm-project/llm-compressor

Meet LLM-Compressor:
github.com/vllm-project/llm-compressor

http://github.com/vllm-project/llm-compressor

Meet LLM-Compressor:
github.com/vllm-project/llm-compressor

http://github.com/vllm-project/llm-compressor

Meet LLM-Compressor:
github.com/vllm-project/llm-compressor

http://github.com/vllm-project/llm-compressor

int4_quantize.py

scheme =”W4A16”,

Fine-grained control over the quantization process

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

Model = Llama-3.1-Instruct

https://arxiv.org/pdf/2411.02355

… but what about accuracy?

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

Reasoning Performance = average score on AIME 2024, MATH-500, and GPQA-Diamond
Models = DeepSeek-R1-Distill

https://neuralmagic.com/blog/quantized-deepseek-r1-models-deployment-ready-reasoning-models/

Fresh off the press: INT4 quantized DeepSeek-R1-0528

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

https://neuralmagic.com/blog/quantized-deepseek-r1-models-deployment-ready-reasoning-models/

Quantization plays well with VLMs as well

Larger quantized is always better than smaller unquantized

Larger quantized is always better than smaller unquantized

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

https://neuralmagic.com/blog/quantized-deepseek-r1-models-deployment-ready-reasoning-models/

Larger quantized is always better than smaller unquantized

Kurtić, E., et al. (2025). "Quantized DeepSeek-R1 Models: Deployment-Ready Reasoning Models."

65.8 vs 74.3 / 73.1 / 72.8

https://neuralmagic.com/blog/quantized-deepseek-r1-models-deployment-ready-reasoning-models/

… but what about speedups?

… but what about speedups?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

https://arxiv.org/pdf/2411.02355

… but what about speedups?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

W8A8 > W4A16

https://arxiv.org/pdf/2411.02355

… but what about speedups?

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

BF16 > W4A16

https://arxiv.org/pdf/2411.02355

… but what about speedups?
github.com/neuralmagic/guidellm

Kurtić, E., et al. (2024). "Give Me BF16 or Give Me Death: Accuracy-Performance Trade-Offs in LLM Quantization."

http://github.com/neuralmagic/guidellm
https://arxiv.org/pdf/2411.02355

What next?
1. How to quantize? → LLM-Compressor

https://github.com/vllm-project/llm-compressor

2. How to benchmark? → GuideLLM
https://github.com/neuralmagic/guidellm

3. Where to find high-quality quantized models? → Red Hat AI’s Hub
https://huggingface.co/RedHatAI

4. How to deploy? → vLLM
https://github.com/vllm-project/vllm

https://github.com/vllm-project/llm-compressor
https://github.com/neuralmagic/guidellm
https://huggingface.co/RedHatAI
https://github.com/vllm-project/vllm

Some more evidence …

Inferencing - what to consider?

Page 67

Why to run the tests?

1. Capacity Planning & Hardware Utilization
We needed to know how many concurrent users our service could support on a single L40S, and how to push that GPU
to its limits without running out of memory or throughput. We also compared a smaller, lighter model (Mistral 7B) to
reveal any trade-offs—particularly its tendency to hallucinate more often—against the larger 24 B variants.

2. The Power (and Pitfalls) of Quantization
Quantizing a model can halve or even quarter its memory footprint, dramatically boosting throughput and concurrency.
However, a naive quantization approach can introduce unacceptable accuracy loss. We highlight Red Hat’s
FP8-dynamic method, which trims memory use by ≈ 50 % while retaining over 98 % of the full-precision model’s
reasoning and QA performance.

3. Quality-to-Cost & Sustainability Trade-Offs
Ultra-large models deliver top-tier accuracy but demand huge GPU budgets and deliver diminishing returns on quality
per dollar. In many real-world RAG and reasoning tasks, mid-sized checkpoints strike the sweet spot—offering robust
instruction-following, multi-step logic, and hallucination resistance without the prohibitive cost of
100-plus-billion-parameter giants.

Inferencing Stack for performance tests

Page 68

OpenDataHub (OpenShift AI)

L40S L40S

Model Serving Stack
vLLM | KServe | …

Optimized Models
Mistral-Small-24B-Instruct-2501-F

P8-dynamic
Workloads

AI Apps |
Pipelines |
Notebooks

ModelCar
Repository

quay.io

Container-
based

Deployment

 Public REST endpoint
HTTPS | OpenAI compatible |

OpenShift Route | Authentication

 internal endpoint
OpenAI compatible | Kubernetes

Services

Models deployed on an AI stack, leveraging
optimized models from Red Hat:

● currently Mistral Small 24B in an FP8
quantized version is deployed

● Model Serving stack is based on vLLM and
KServe to provide scalable deployments

● OpenShift (AI) provide the GPU integration
for dedicated and shared GPU usage

● the model can be exposed through external
HTTPS and cluster internal endpoints

● An external endpoint can be integrated in an
API Gateway

https://huggingface.co/RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic
https://huggingface.co/RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic
https://huggingface.co/RedHatAI

Model Benchmarks (1/3) - General
Information

Page 69

mistralai/Mistral-Small-24B-
Instruct-2501

RedHatAI/Mistral-Small-24B-
Instruct-2501-FP8-dynamic

mistralai/
Mistral-7B-Instruct-v0.3

Model Description Instruction-tuned variant of Mistral-Small
(“Instruct-2501”)

the same “Instruct-2501” checkpoint,
dynamically quantized

Instruction-tuned Mistral
model (v0.3)

Model Licence Apache License 2.0
(Huggingface Token required)

Apache License 2.0
(open)

Apache License 2.0
(Huggingface Token required)

Model Size 24 Billion params 24 Billion params 7 Billion Params

Context Length 32 768 32 768 32 768

Precision BF16 FP8 BF16

GPU RAM required

Model Weights ~44GiB ~22GB ~13.6GB

Reserve (Cuda
Allocation,

Pytorch Cache)

~3GB ~3GB ~3GB

Left for
KV-Cache*

N/A ~23GB ~31GB

*Assuming L40S NVIDIA GPUs

Model Benchmarks (2/3) - Quality

Page 70

mistralai/Mistral-Small-24B-
Instruct-2501

RedHatAI/Mistral-Small-24B-
Instruct-2501-FP8-dynamic

mistralai/
Mistral-7B-Instruct-v0.3

IFEval (Inst-and-Prompt
Level Strict Acc, 0-shot)

73.27 73.53 54.65

BBH (Acc-Norm, 3-shot) 45.18 44.39 25.57

MMLU-Pro (Acc, 5-shot) 38.83 37.28 23.06

Average Score 52.42 51.73 19.23

Above 3 benchmarks stress the model’s ability to parse open-ended instructions, perform multi-step reasoning, and generalize under
few-shot prompting—exactly what you need for RAG and Agents that must plan, call tools, loop over results, etc.

● IFEval is pure instruction-following with no examples—your baseline for “can it do what I just told it?”
● BBH tests a wide variety of hard reasoning tasks in a few-shot context—your proxy for “can it chain together reasoning steps

under guidance?”
● MMLU-Pro zeroes in on tougher academic/factual challenges—your yardstick for “does it still know its facts when you give it 5

examples?”
● The Average Score neatly summarizes the three into one number you can track.

Between the three models:

● Both 24B checkpoints sit at ~73 % IFEval, ~44–45 % BBH and ~37–39 % MMLU-Pro → an ≈ 52 % average
● The 7B comes in at 54.7 % IFEval, 25.6 % BBH, 23.1 % MMLU-Pro → a 19.2 % average

The Red Hat quantized
Mistral 24B heavily
outpaces its little

relative, while only
slightly losing ground
compared to its sibling.
At the same time, the

FP8 quantization
make it a great choice

when balancing
quality to infra
requirements!

Model Benchmarks (3/3) - Performance

Page 71

Model Test
Strategy

Requests / 
sec

Concurrent Requests Tokens /sec

Mistral-7B-Instruct-v0.3
synchronous 0.37 1.0 ~47.4

throughput (max) 10.93 176.94 ~1 398.9

Mistral-Small-24B-
Instruct-2501-FP8-dynamic

synchronous 0.19 1.0 ~24.7

throughput (max) 8.66 209.33 ~1 108.6

While the Mistral 7B
performs more

responsive under low
load, under heavy
load, the 24B FP8

model “catches up”,
narrowing the latency

gap to only ~1.3×
slower at max
throughput.

In summary, at a more
than ~2.5× quality

improvement,
latency increases by

much less which
makes the quantized
model a great choice!

Tokens /sec is the average number of output tokens the model emits per second under each load profile.

At peak throughput, the 7B model pushes out ~1 400 tokens/sec, while the quantized 24 B model does ~1 100 tokens/sec—consistent
with their relative request/sec figures.

Single-Request Latency

● Workload per inference: Mistral-7B (7 B params at BF16) does ~7 B matrix ops on 733 TFLOPS cores; Mistral-24B-FP8 (24 B
params at FP8) does ~3× more ops on 1 466 TFLOPS cores.
Result: Even with FP8’s double-speed cores, the 24 B model’s larger size makes its per-call latency ~2× that of the 7 B.

High Concurrency

1. Amortized overhead: Kernel launches, memory setup, etc., get shared across many parallel requests.
Memory efficiency: FP8 uses half the memory, so more data stays on-chip, reducing stalls.

2. Pipelined attention: Modern kernels (e.g. FlashAttention-3) overlap compute and data movement, pushing FP8 hardware toward
peak throughput.

Q&A

Eldar Kurtić

June 3rd, 2025

Max Dargatz

