@& Dgtabend

Evolution of a Data Warehouse Engine's Query Protocol

liyazhou@databend.com DatabendlLabs



mailto:liyazhou@databend.com

Agenda

01

02

03

04

05

06

Databend Introduction
Early Days of Databend's Query Protocols

The Road to a Modern Query Protocol
Ecosystem Integration
Future Plans

Question & Answers

",* Databend



‘ Databend
What is Databend?

Databend is an open-source cloud data warehouse engine that serves as a cost-effective alternative to Snowflake. It
features:

I High performance vectorized execution engine built in Rust.

I Fully separation of storage and compute for independent scaling. .’

I Object storage as the primary storage.

I ANSI SQL compliant, with semi-structured data support. Data be n d

I High-throughput real-time data ingestion.



Databend Use Cases

‘ Databend

Databend has been deployed in many mission-critical enterprise scenarios, successfully helped these

customers reducing costs and improving efficiency:

. Real-time .
Batch Analytics Analytics Log Analytics

Replace Hive and Handle streaming Replace ElasticSearch
Spark workloads for data processing and for centralized log
efficient large-scale power real-time storage and analysis

data processing recommendation

systems

Database
Archival

Archive MySQL/TiDB
historical data.

User Behavior
Analysis

Track, analyze, and

derive insights from

user interactions and
activities.



‘ Databend
Databend Use Cases

When implementing these scenarios, ecosystem support is inevitably needed.
In the Databend ecosystem, rich support is provided for ingestion, ETL, Bl and many other ecosystems:

Load data from Kafka,
MySQL/Postgres, etc in real-
time.

Transform data with dbt,
Airflow, Airbyte, etc.

Visualized with Metabase,
Redash, Grafana, etc.

Interactive command line tool “bendsq1” Which supports syntax
highlighting, autocompletion, etc.

Programmatic access with
JDBC, Python, Rust, Go, etc.

All these integrations are built on top of Databend's Query Protocol.



"‘ Databend
Early Days of Databend's Query Protocols

In its early days, Databend intended not to introduce a dedicated query protocol.

To accelerate time to market, Databend uses the MySQL protocol & Clickhouse

HTTP protocol for a faster development & faster user adoption.




MySQL Protocol

- MySQL protocol is widely
adopted, and “mysal-client” IS
familiar to lots of programmers.

 In the early days, many users
are actively using “mysql-client” to
connect to Databend. It helps a
lot on adapting early users.

",* Databend

Copyright (c) 2000, 2022, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show tables;

| country
| countrylanguage |

3 rows in set (©.00 sec)

mysql>




"‘ Databend
MySQL Protocol's Issues

However, there are some issues:

I MySQL Protocol does not support returning progress information while executing a query.

I MySQL drivers, especially JDBC, often depend on some unusual system tables and fields, such as some complex joins over “ information_schema ”,
some of them are hard to remake in Databend.

I Databend's SQL syntax choose to be ANSI SQL oriented, which is more similar to PostgreSQL, causing many users to question why something like
‘my_table” don't work.




‘.,* Databend

Clickhouse HTTP Protocol

Clickhouse's HTTP protocol is pretty simple and easy to implement. And it's also familiar to our team members who were active in Clickhouse
community.

$ curl "http://localhost:8123/?query=SELECT%20numbers%283%29"

1

And it also returns a nice progress information while executing a query:

X-ClickHouse-Progress: {"read_rows":"2752512","read_bytes":"240570816","total_rows_to_read":"8880128","elapsed_ns":"662334"}

X-ClickHouse-Progress: {"read_rows":"5439488","read_bytes":"482285394", "total_rows_to_read":"8880128","elapsed_ns":"992334"}

X-ClickHouse-Progress: {"read_rows":"8783786","read_bytes":"819092887","total_rows_to_read":"8880128","elapsed_ns":"1232334"}




é Databend

Clickhouse HTTP Protocol

Clickhouse's HTTP query is single

long polling, and network jitter may
cause it to fail.

ien ~ 4 lic house
Many HTTP gateways like Nginx

has a limit on the maximum
timeout for HTTP long polling.

DON'T RESTART IT!



@& Databend

The Road to a Modern Query Protocol

After the Databend Cloud project started, we began to re-

I Should tolerate HTTP gateway restart and network jitter on long running queries.
I Should provide rich progress information during query execution.
I Should allow offloading data plane traffic to avoid high cross—AZ data transfer costs.

I Should be simple and easy to implement.



‘.,* Databend

The RESTful Query Protocol

The RESTful Query Protocol is designed to meet the above requirements.

curl -u root: \
--request POST \
'127.0.0.1:8001/v1/query/" \

--header 'Content-Type: application/json' \

--data-raw '{"sql": "SELECT avg(number) FROM numbers(100000000)"}"




The RESTful Query Protocol

"avg(number)", "type":"Nullable(Float6

:[ [ "49999999.5" 7] 7,
"state":"Succeeded",

"error":null,

"scan_progress":{ "rows
vrite_pr

"result_progr

1/query

"final_uri v1l/query/b22

"next_uri":"/vl/query/b22c5bba-5e78-4e50-87

"kill_uri":"/v1/query/b22c5bba-5e78-4e50-87b0-

N7

) 5

55c757f5/kill"

"‘ Databend




é Databend

The RESTful Query Protocol

It's a pagination based protocol, and each page contains a partial of query

results.
Client ' Databend ’

For every query, the client will get a “ next_uri “ to get the next page of

POST /\l/auery

results. netucic . /page/0
GET next_un ~
A “next_uri “ can be safely retried. Y
GET inext_un ~
When the query is still running, the “ next_uri “ may return an empty page nexturi ./page/!

after a while. And the client should keep retrying the “ next_uri “ until
getting a non-empty page.

GET inext__un

next_uci: ../Fnal_ur

GET next_un

When the query is done, the “ next_uri “ will become the “ next_uri “ , et
and the client should call the “ next_uri “ to release the query resources in
the server side.




é Databend

Offloading Data Plane

o We can not assume to co- INSERT INTO myhugetable VALUES ?

locate in the same AZ in the
Client —=>| databend
cloud.

» To avoid high cross-AZ data /{é’d.”

transfer costs, we can offload [ - J
the data plane to the S3
storage.

stage @~ /mytmpinsert-{UUID}.parquet



Save Session State

- At first, Databend's query protocol are mostly
stateless.

- At some point, we need to support some
session settings, like “max_threads”
“collation” , etc. Also, we need to track some
metadata about transactions, etc.

«  We still choose a RESTful style to save the
session state.

lIIIIHIHHHHIIIIl

é Databend

SET max_threads = 5;

POST /W/qu
== :::7 Databend
next_uni: ../Pasdo

session: { max_threads: 5}

SELECT ...
session: { max_threads: 5}

POST /. query ~

/
next_uni: ../ Page/ 0



"‘ Databend
Developing Drivers

Before the ecosystem integrations, we have to build stable client drivers among different languages as the foundation.

In the driver, we need to handle these things properly:

| cCorrect pagination handling | Correct data offload handling

| Correct session state management I Correct ORM integration




‘ Databend

Build the Ecosystem: CLI

The first step is build a CLI tool called “ bendsql” to replace mysql-client . In most of the time, CLlI is the first interaction to users.

brew install databendcloud/homebrew-tap/bendsql




"‘ Databend
Build the Ecosystem: Ingestion, ETL, Bl

JDBC is the underated. Many tools connects JDBC nicely, without the need to develop a new
connector. Such as “dbeaver” , “metabase” , etc.

And the data ingestion ecosystem is also heavily based on JDBC, like Flink CDC and Kafka
Connector are the two major ones.

To replicate the data from a MySQL/Postgres database, Debezium is the de facto standard, it's
also based on JDBC.

The development cost of all these ecosystems integration is surprisingly not high as we expected,
since the driver layer already handles the details of the query protocol nicely.




"‘ Databend
Future Plans

' Better built-in load balancing capabilities ' Reuse Rust core for every language's driver




"‘ Databend
Key Takeaways

I Starting with an existing protocol makes the early adopters easier to onboard.

I When you have to build your own protocol, it's better to keep it simple and easy to implement.

I On the Cloud, offloading data plane to S3 storage is the key.

I Having an Rust core can significantly reduce the work on developing a new language's driver.

I CLlI is the first interation to users.

I JDBC is the underated.




",* Databend

Questions & Answers



“,* Databend

Thank you!



