
Knative - A story about
Serverless Development

Open Source @ Siemens, 23.05.2023, Reto Lehmann

Who am I?

Roadmap 🛣
● Introduction to Knative
● Demo time
● Peek behind the curtains

Knative Overview

Knative Building Blocks

Knative Serving

● Autoscaling
● Request Queuing
● Metrics
● Networking stuff

○ A/B, canary deployments
○ Gradual rollouts
○ Auto TLS
○ Domain mapping

Knative Eventing

● Eventing Abstraction
● Payload as CloudEvents
● Multiple Event Sources
● Logging + Metrics

https://cloudevents.io/
https://knative.dev/docs/eventing/sources/

Knative Client + Functions

● CLI Tooling
● The `kn` CLI allows to manage Knative resources from CLI
● Knative Functions

○ Enables development and deployment of Functions
○ Provides the `func` CLI
○ Bootstrap functions for multiple languages

■ Node.js
■ Python
■ Go
■ Quarkus
■ Rust
■ Spring Boot
■ TypeScript

Demo 💻

⌛ Way more stuff, like

● A/B, Canary Deployments, Gradual rollouts
● Tag based routing
● Configuration and Revisions
● Metrics and Observability
● Knative Eventing
● Please refer to the documentation

https://knative.dev/docs/

Behind the curtains

Open Source Development
Yes!
Finally,
no VPNGo and add a new

configuration for
our environment!

Open Source Development

1. Fork

$ git clone git@github.com:retocode/serving.git

Cloning into 'serving'...
remote: Enumerating objects: 138535, done.
remote: Counting objects: 100% (138535/138535), done.
remote: Compressing objects: 100% (37071/37071), done.
remote: Total 138535 (delta 94630), reused 138190 (delta 94500),
pack-reused 0
Receiving objects: 100% (138535/138535), 83.23 MiB | 12.89 MiB/s, done.
Resolving deltas: 100% (94630/94630), done.

3. Hack, hack, hack

2. Git clone

$ git add .; git commit -m "add new configuration variable";
git push

On branch main
Your branch is up to date with 'origin/main'.

4. Git commit, Git push

The reality is a bit more complicated

The reality is a bit more complicated
$ tree serving
├── AUTHORS
├── CODE-OF-CONDUCT.md
├── CONTRIBUTING.md
├── DEVELOPMENT.md
├── LICENSE
├── Makefile
├── OWNERS
├── OWNERS_ALIASES
├── README.md
…
 └── yaml
SECURITY_CONTACTS
 ├──
code-of-conduct.md
 ├── fields.go
 ├── yaml.go
 └──
yaml_go110.go

2207 directories, 7335
files

● Massive amount of code
● Domain Knowledge

○ Example 1
○ Example 2

● Shared Components and Packages
● Reasoning in past PRs
● Outdated documentation
● A LOT of bash scripts

https://raw.githubusercontent.com/ReToCode/diagrams/main/knative/bigpicture-controller-resources.drawio.svg
https://raw.githubusercontent.com/ReToCode/diagrams/main/knative/ksvc-resource-tree.drawio.svg

Planning is chaotic at times
● Not a single team/person/organization

responsible
● Multiple tools/processes
● People are no longer working on Knative

Roles (I)

More detailed on: https://github.com/knative/community/blob/main/ROLES.md

https://github.com/knative/community/blob/main/ROLES.md

Roles (II)

More detailed on: https://github.com/knative/community/blob/main/ROLES.md

https://github.com/knative/community/blob/main/ROLES.md

Working Groups

More detailed on:
https://github.com/knative/community/blob/main/working-groups/WORKING-GROUPS.md

● Serving
● Eventing
● Client
● Docs and User Experience
● Functions
● Productivity
● Operations
● Security

Regular public
meetings
(recorded)

Public agenda
and notes

https://github.com/knative/community/blob/main/working-groups/WORKING-GROUPS.md

Knative Specification

Knative Networking Specification

Knative Google Cloud
Run

implement

Conformance tests

net-istio net-kourier

Conformance tests

net-contour

CI/CD

● Standardized go-build, go-test, security
check, style-check, pr-verification

● Serving
○ ~3000 Unit Tests
○ E2E tests on Kind on GitHub Actions with a

matrix of
■ Multiple Kubernetes versions
■ All networking layers
■ Non TLS/TLS/Service Mesh

○ E2E tests on "real clusters" in GKE with the
same matrix

● Cross-Repository tests (imports go tests)

https://kind.sigs.k8s.io/

Behind the Red Hat curtains

Creating a product out of OSS

● OpenShift Serverless is Knative
● Still Open Source: https://github.com/openshift-knative
● Changes are always done upstream if possible
● Extended operator to support installation on OpenShift
● A lot of additional testing for OpenShift

https://github.com/openshift-knative

The pipeline

Upstream:
Knative

Midstream:
Openshift-Knative

Downstream:
Red Hat Internal

Fork Mirror

Git patches Re-build
Re-testing
Signing
CDN distributionBack ports,

Bugfixes

● Can be chaotic at times, but very welcoming, helpful and open community
● It can be hard to get started, look for guidance (like good-first-issues) and

mentorship
● Good documentation and communication is key
● Having a good coverage of features/functionality by tests enable automation
● Bash is still a pretty common ground
● Git patches are a pretty solid way to extend/adapt some OSS code that you

do not have full control over (you can also do pretty hacky stuff, but that is
better discussed over 🍻😆)

Personal summary on OSS development

Thank you

