
Automating and Managing an IoT
Fleet Using Git

Open Source @ Siemens 2023

Matthias Lüscher, Schindler AG

2

About Me
• I prefer to automate boring jobs:

→ E.g. as a child: Operate a ball track using an
 elevator
→ E.g. as a professional: Operate IoT devices
 that connect elevators using CI/CD

• Instead of attending a lot of courses and earning
some training awards I decided to create my own
open source (automation research) project called
edi

• I live in Lucerne and work for Schindler AG as a
principal engineer

• During my spare time I enjoy the nature together
with my family (biking, hiking, skiing, …)

• Contact: lueschem@gmail.com

https://www.get-edi.io/

3
Mental Exercise

4

Mission:
Automate as much as possible in an IoT environment:

⏵ Building of tailor made operating systems
⏵ Quality assurance

⏵ Configuration management
⏵ Fleet management

This should result in:

🗸 High quality
🗸 Reproducibility

🗸 Security
🗸 Reduced effort

🗸 Short response times

5

Agenda

Continuous Delivery

Keep an entire IoT fleet up to date
using git

Device Management

Adjust an IoT device for an individual
use case

Continuous Integration

Build an OS image for an IoT
device, dispatch it to a device

and test it

6

Continuous Integration

7

Continuous Integration
Overview: Build OS image → OTA update → test

Workflow

1. Start the workflow on GitHub ([1 (private)], [1 (public)])
2. A job gets dispatched to the self-hosted runner
3. The runner clones git repositories
4. During the OS build a lot of Debian packages will be

fetched
5. The OS artifact will be uploaded to Mender
6. The OS artifact will be dispatched to the chosen device
7. The device will be thoroughly tested ([2])
8. All the build and test results get uploaded to GitHub

Key Principles
● Security ([3])
● Reproducibility
● Automation
● Quality assurance

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

8

Workflow

1. Start the workflow on GitHub ([1 (private)], [1 (public)])
2. A job gets dispatched to the self-hosted runner
3. The runner clones git repositories
4. During the OS build a lot of Debian packages will be

fetched
5. The OS artifact will be uploaded to Mender
6. The OS artifact will be dispatched to the chosen device
7. The device will be thoroughly tested ([2])
8. All the build and test results get uploaded to GitHub

Key Principles
● Security ([3])
● Reproducibility
● Automation
● Quality assurance

Continuous Integration
Start workflow

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

9

Continuous Integration
Build the OS image

it starts from scratch...

… using debootstrap!

instead of using a chroot
we launch a LXD container

Ansible gets used to
customize the container

custom commands turn the root
file system into an OS image

QEMU emulates foreign
CPU architectures

10

Workflow

1. Start the workflow on GitHub ([1 (private)], [1 (public)])
2. A job gets dispatched to the self-hosted runner
3. The runner clones git repositories
4. During the OS build a lot of Debian packages will be

fetched
5. The OS artifact will be uploaded to Mender
6. The OS artifact will be dispatched to the chosen device
7. The device will be thoroughly tested ([2])
8. All the build and test results get uploaded to GitHub

Key Principles
● Security ([3])
● Reproducibility
● Automation
● Quality assurance

Continuous Integration
Test the device

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

11

Workflow

1. Start the workflow on GitHub ([1 (private)], [1 (public)])
2. A job gets dispatched to the self-hosted runner
3. The runner clones git repositories
4. During the OS build a lot of Debian packages will be

fetched
5. The OS artifact will be uploaded to Mender
6. The OS artifact will be dispatched to the chosen device
7. The device will be thoroughly tested ([2])
8. All the build and test results get uploaded to GitHub

Key Principles
● Security ([3])
● Reproducibility
● Automation
● Quality assurance

Continuous Integration
Handling of secret stuff

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

12

Device Management

13

Device Management
Example: Turn an IoT device into a GitHub runner

Workflow

1. Assign a configuration to a device
2. A configuration artifact gets dispatched to the device
3. The device fetches a playbook using git ([1])
4. The device fetches the roles that the playbook requests
5. The device fetches the .NET GitHub actions runner binary
6. The device fetches some additional Debian packages
7. The GitHub actions runner registers itself on GitHub ([2])

Key Principles
● Idempotency
● Traceability
● The device knows a lot about itself
● Security
● Reproducibility
● Automation

https://github.com/lueschem/edi-gh-actions-runner-playbook/blob/main/playbook.yml
https://github.com/lueschem/edi-ci/settings/actions/runners

14

Workflow

1. Assign a configuration to a device
2. A configuration artifact gets dispatched to the device
3. The device fetches a playbook using git ([1])
4. The device fetches the roles that the playbook requests
5. The device fetches the .NET GitHub actions runner binary
6. The device fetches some additional Debian packages
7. The GitHub actions runner registers itself on GitHub ([2])

Key Principles
● Idempotency
● Traceability
● The device knows a lot about itself
● Security
● Reproducibility
● Automation

Device Management
Example: Turn an IoT device into a GitHub runner

https://github.com/lueschem/edi-gh-actions-runner-playbook/blob/main/playbook.yml
https://github.com/lueschem/edi-ci/settings/actions/runners

15

Workflow

1. Assign a configuration to a device
2. A configuration artifact gets dispatched to the device
3. The device fetches a playbook using git ([1])
4. The device fetches the roles that the playbook requests
5. The device fetches the .NET GitHub actions runner binary
6. The device fetches some additional Debian packages
7. The GitHub actions runner registers itself on GitHub ([2])

Key Principles
● Idempotency
● Traceability
● The device knows a lot about itself
● Security
● Reproducibility
● Automation

Device Management
Example: Turn an IoT device into a GitHub runner

https://github.com/lueschem/edi-gh-actions-runner-playbook/blob/main/playbook.yml
https://github.com/lueschem/edi-ci/settings/actions/runners

16

Device Management
Example: Turn a headless device into a kiosk terminal

17

Device Management
Example: Turn a headless device into a kiosk terminal

Workflow

1. Assign a configuration to a device
2. A configuration artifact gets dispatched to the

device
3. The device fetches a playbook using git
4. The device fetches the roles that the playbook

requests
5. The playbook gets applied and during that

process some additional packages might get
installed

Key Principles
● Idempotency
● Traceability
● The device knows a lot about itself

18

Continuous Delivery

19

Demo Fleet
Different devices, different use cases

1. Raspberry Pi 2
legacy device

2. Compulab IOT-GATE-iMX8
WiFi 6 hotspot

3. Raspberry Pi 3
kiosk terminal

4. Raspberry Pi 3
kiosk terminal

5. Variscite VAR-SOM-MX8M-NANO
development device

6. Raspberry Pi 4
GitHub actions runner

7. Raspberry Pi 4
kiosk terminal

https://www.raspberrypi.com/products/
https://www.compulab.com/de/products/iot-gateways/iot-gate-imx8-industrial-arm-iot-gateway/
https://www.raspberrypi.com/products/
https://www.raspberrypi.com/products/
https://www.variscite.de/product/system-on-module-som/cortex-a53-krait/var-som-mx8m-nano-nxp-i-mx-8m-nano/
https://www.raspberrypi.com/products/
https://www.raspberrypi.com/products/

20

GitOps
What is GitOps?

● A new concept/buzzword in the IT industry
● The goal is to automate as many IT operations as possible
● The automation shall be based on a fully declared and versioned target state
● Git is usually the tool of choice to store the target state
● A bunch of tools are responsible for applying the target state to the infrastructure

→ GitOps is not only applicable within the IT industry -
 it can also be very beneficial for embedded and IoT use cases!

21

GitOps
Map the fleet to a git repository

legacy device, WiFi 6 hotspot,
kiosk terminal, GitHub actions runner

kiosk terminal

kiosk terminal

development device

22

GitOps
A look behind the scene

Workflow

1. A branch gets modified:
develop/feature branch: commit
main/canary/production branch: merge

2. GitHub dispatches a job to a runner ([1])
and the runner clones the fleet repository ([2], [3], [4])

3. The fleet facts get retrieved from Mender
4. OS update requests get scheduled ([5])
5. Configuration update requests get scheduled

Key Principles
● Idempotency
● Traceability
● Staged roll outs
● From main branch and upwards no changes
● Proxy between management server and fleet

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

23

Workflow

1. A branch gets modified:
develop/feature branch: commit
main/canary/production branch: merge

2. GitHub dispatches a job to a runner ([1])
and the runner clones the fleet repository ([2], [3], [4])

3. The fleet facts get retrieved from Mender
4. OS update requests get scheduled ([5])
5. Configuration update requests get scheduled

Key Principles
● Idempotency
● Traceability
● Staged roll outs
● From main branch and upwards no changes
● Proxy between management server and fleet

GitOps
Already familiar tools take care of the orchestration

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

24

Workflow

1. A branch gets modified:
develop/feature branch: commit
main/canary/production branch: merge

2. GitHub dispatches a job to a runner ([1])
and the runner clones the fleet repository ([2], [3], [4])

3. The fleet facts get retrieved from Mender
4. OS update requests get scheduled ([5])
5. Configuration update requests get scheduled

Key Principles
● Idempotency
● Traceability
● Staged roll outs
● From main branch and upwards no changes
● Proxy between management server and fleet

GitOps
An Ansible playbook takes care of the fleet

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

25

Workflow

1. A branch gets modified:
develop/feature branch: commit
main/canary/production branch: merge

2. GitHub dispatches a job to a runner ([1])
and the runner clones the fleet repository ([2], [3], [4])

3. The fleet facts get retrieved from Mender
4. OS update requests get scheduled ([5])
5. Configuration update requests get scheduled

Key Principles
● Idempotency
● Traceability
● Staged roll outs
● From main branch and upwards no changes
● Proxy between management server and fleet

GitOps
The inventory of the fleet

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

26

Workflow

1. A branch gets modified:
develop/feature branch: commit
main/canary/production branch: merge

2. GitHub dispatches a job to a runner ([1])
and the runner clones the fleet repository ([2], [3], [4])

3. The fleet facts get retrieved from Mender
4. OS update requests get scheduled ([5])
5. Configuration update requests get scheduled

Key Principles
● Idempotency
● Traceability
● Staged roll outs
● From main branch and upwards no changes
● Proxy between management server and fleet

GitOps
An individual device configuration

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

27

Workflow

1. A branch gets modified:
develop/feature branch: commit
main/canary/production branch: merge

2. GitHub dispatches a job to a runner ([1])
and the runner clones the fleet repository ([2], [3], [4])

3. The fleet facts get retrieved from Mender
4. OS update requests get scheduled ([5])
5. Configuration update requests get scheduled

Key Principles
● Idempotency
● Traceability
● Staged roll outs
● From main branch and upwards no changes
● Proxy between management server and fleet

GitOps
Eventually an OS update will get dispatched

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

28

GitOps
Some remarks

● The important monitoring aspect is out
of scope of this presentation!

● On a large fleet the inventory and the
individual device configurations would
be offloaded to a separate tool/database.

29

Conclusion

30

GitOps for Fleet Management
Key benefits I

• Everybody is working on the
same git repository/talking the
same language

• Full traceability
• No changes introduced beyond

the main branch – just merges
• Very high level of automation
• Staged roll outs
• Almost no room for human

errors

31

GitOps for Fleet Management
Key benefits II

• Powerful toolbox
• Suitable for a huge fleet
• Components are proven

in use
• Components are

exchangeable
• Fun to work with

32

Git Repositories

Continuous Delivery

Keep an entire IoT fleet up to date
using git

Device Management

Adjust an IoT device for an individual
use case

Continuous Integration

Build an OS image for an IoT
device, dispatch it to a device

and test it

edi-ci/edi-ci-public

edi-pi

edi-var

edi-cl

OS Setup

CI Orchestration

kiosk-playbook

ansible-kiosk

edi-gh-actions-
runner-playbook

ansible-github_
actions_runner

edi_installer

Playbooks/Roles

edi-cd

CD Orchestration

CI orchestration

https://github.com/lueschem/edi-ci
https://github.com/lueschem/edi-ci-public
https://github.com/lueschem/edi-pi
https://github.com/lueschem/edi-var
https://github.com/lueschem/edi-cl
https://github.com/lueschem/kiosk-playbook
https://github.com/lueschem/ansible-kiosk
https://github.com/lueschem/edi-gh-actions-runner-playbook
https://github.com/lueschem/edi-gh-actions-runner-playbook
https://github.com/MonolithProjects/ansible-github_actions_runner
https://github.com/MonolithProjects/ansible-github_actions_runner
https://github.com/lueschem/edi_installer
https://github.com/lueschem/edi-cd

33

Links

• Embedded Meets GitOps
• Managing an IoT Fleet with GitOps
• Building and Testing OS Images with GitHub Actions
• Surprisingly Easy IoT Device Management

https://www.get-edi.io/Embedded-Meets-GitOps/
https://www.get-edi.io/Embedded-Meets-GitOps/
https://www.get-edi.io/Managing-an-IoT-Fleet-with-GitOps/
https://www.get-edi.io/Managing-an-IoT-Fleet-with-GitOps/
https://www.get-edi.io/Building-and-Testing-OS-Images-with-GitHub-Actions/
https://www.get-edi.io/Surprisingly-Easy-IoT-Device-Management/

34

Q&A

	Slide 1
	Content
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Continuous Integration Automated hardware in the loop testing
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Continuous Integration Automated GitHub runner setup
	Slide 14
	Slide 15
	Device Management Turn the device into whatever it needs to be
	Slide 17
	Slide 18
	Demo Fleet Different devices, different use cases
	GitOps Manage the fleet with a git repository
	Slide 21
	GitOps How it works behind the scene
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	GitOps for Fleet Management Key benefits I
	GitOps for Fleet Management Key benefits II
	Slide 32
	Links
	Slide 34

