
What's Bazel? Why should you care?

What is this talk about?

What is a build system?

A short history of build systems

Challenges faced by builds at a large scale

Introduction to Bazel

Who am I?

Antonio Di Stefano

DevEx engineer @ Engflow

What is a build system?

A build system is a tool that helps you go from source code to deployable artifacts. It
includes tasks such as:

Compiling code

Generating code

Running tests

Packaging artifacts (e.g., Docker images, JARs, .deb, .tar.gz, etc.)

Challenges of Build Systems

Speed and Efficiency

Reproducibility

Configurability

Extensibility

Integrations

History of Build Systems

DIY builds with shell scripting

g++ -Wall ... -o lib lib.cc
g++ -Wall ... -o main main.cc
g++ -Wall ... -o test test.cc
./test

Pros:

Maintaining this build will guarantuee job stability for a while

Can technically be used with any lanuage/platform

Cons:

Not very portable

Requires setup for each workstation

No caching from the build

Hard to parallelize and speed-up

Bespoke configuration

No integration with tools

Cannot trivially target a subset of the build

Make

CXX=g++
CXX_FLAGS=-Wall ...
lib:
 $(CXX) $(CXX_FLAGS) -o lib lib.cc
main: lib
 $(CXX) $(CXX_FLAGS) -o main main.cc
test: lib
 $(CXX) $(CXX_FLAGS) -o test test.cc
run_test:
 ./test

Pros:

Is able to cache build targets

Can parallelize build target (eg: build_main and build_test/test)

Can also be used with any lanuage/platform

Cons:

As portable as a shell script

Naive caching based on timestamp

Hard to reuse tooling

Hard to read

CMake

project(stuff)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall ...")

add_library(lib SHARED lib.cc)

add_executable(main main.cc)
target_link_libraries(main lib)

add_executable(test_bin test.cc)
target_link_libraries(test_bin lib)

add_custom_target(
 test
 COMMAND ./test_bin
 DEPENDS test_bin)

Pros:

Reusable functions and macros

Makes it easier to write portable build scripts

Has good support for a bunch of compiled languages out-of-the-box

Well integrated with 3rd party tooling

Very configurable

Someone wrote a raytracer with cmake: https://github.com/64/cmake-raytracer

Cons:

Still suffers from the same issue as the underlying build system

https://github.com/64/cmake-raytracer

Languge-specific build systems

Example: Maven

<project ... >
 <groupId>world.hello</groupId>
 <artifactId>hello-world</artifactId>
 <packaging>jar</packaging>
 <version>0.0.1</version>

 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>
</project>

Pros:

Drop-in solution for a specific language

Easy to use

Usually has support for dependency management out-of-the-box

Very well integrated within the ecosystem

Cons:

Specific to a single language

Hard to tune

Hard to integrate different projects together

What is Bazel?

Open-source build system developed by Google

Designed for large, complex software projects

Scalable, deterministic, and supports multiple languages

Uses Starlark build language

Wide range of programming languages and platforms supported

Built-in caching and distributed builds for faster and efficient builds

Let's have a look

cc_library(
 name = "lib",
 srcs = ["lib.cc"],
)

cc_binary(
 name = "main",
 srcs = ["main.cc"],
 deps = [":lib"],
)

cc_test(
 name = "test",
 srcs = ["test.cc"],
 deps = [":lib"],
)

Pros:

Works with a plethora of languages out-of-the-box and can easily be extended

Remote caching and remote execution support

Smarter and more reliable caching based on content hashing

Optimised for speed, reproducibility and portability

Used by a bunch of tech giants like: Google, Uber, Dropbox, SpaceX, ...

Cons:

Tooling support could improve

Quite intimidating for newcomers

Bazel in-depth

Target

A target is something that bazel can build. In its simplest form a target is made of:

0..N input files

0..N output files

0..N actions

Actions

Actions are atomic commands that are executed in a build to generate outputs from a
given set of input. A good example is an action running a compiler or a code-generator

Workspaces

A workspace in bazel is simply a directory containing any number of source files and a
WORKSPACE file at the top-level path of said workspace.

/a: directory
 /WORKSPACE
 /b: directory
 /WORKSPACE
 /c: directory
 /source.c

Package

A package in Bazel is a sub-path in a repository containing a BUILD file and any
amount of other files. Each package may have any amount of build targets.

Labels

Labels are unique identifiers for targets. A label in bazel follows the following structure:

@workspace_name//package_name:target_name

@ is the current workspace, but it's often times omitted.

BUILD files

BUILD (or BUILD.bazel) files use macros and rules to instantiate various kinds of
build targets

Rules

Allow defining custom reusable logic for build rules

def _hello_world_impl(ctx):
 output_file = ctx.outputs.out
 ctx.actions.write(output_file, "Hello World!\n")

hello_world = rule(
 implementation = _hello_world_impl,
 attrs = {},
 outputs = {"out": "%{name}.txt"},
)

Macros

Can be used to combine or simplify existing rules

def cc_lib_and_binary(name, **kwargs):
 lib_name = "%s.lib" % name

 cc_library(
 name = lib_name,
 **kwargs,
)

 deps = kwargs.pop("deps", []) + [lib_name]
 cc_binary(
 name = name,
 deps = deps,
 **kwargs
)

Bazel flags and .bazelrc

Bazel provides a huge amount of flags to configure the build and even allows you to
define more. .bazelrc makes it easier to preset, standardize and categorize flags
within a codebase.

build --cxxopt="-std=c++14"
build --host_cxxopt="-std=c++14"

build:ci --color=yes
build:ci --curses=yes
build:ci --show_timestamps
build:ci --announce_rc

build:rbe --remote_executor=grpcs://rbe.cluster.engflow.com

Useful tools

Gazelle: a multi-language build file generator

Buildozer: powerful build editor/rewriter

Bazelisk: bazel's de-facto version manager

Exodus: migration tool from maven to bazel developed at Wix

awesomebazel.com: amazing resource to find out more about the growing bazel
ecosystem

Thank You!

Contact information:

Email: antonio@engflow.com

LinkedIn: https://uk.linkedin.com/in/antonio-di-stefano-405230108

Additional resources:

Bazel official website: https://bazel.build

Bazel GitHub repository: https://github.com/bazelbuild/bazel

mailto:antonio@engflow.com
https://uk.linkedin.com/in/antonio-di-stefano-405230108
https://bazel.build/
https://github.com/bazelbuild/bazel

