
Empowering GraphQL at scale with Apollo
open source tooling

Andy Roberts
Senior Manager - EMEA Customer Success

Apolloʼs open source journey
And how itʼs tooling and products empower organisations

● MeteorJS
● The data abstraction problem and GraphQL
● The birth of Apollo Client and Server
● Apollo Federation and interconnected graphs
● Commercial and open source working hand in hand

● What is GraphQL?
● Introduction to “The Graph”
● Overview of Federation

In the beginning…

The start of our journey
The birth of Meteor

● Preview release in December 2011
● Fullstack JavaScript framework for building isomorphic apps
● Opinionated way to build fullstack apps
● Open source and community were at the heart of the project
● Meteor Galaxy - the best way to run your meteor apps
● But there was a problem…
● MongoDB

The start of our journey
The ticket that changed everything

The start of our journey
A new star is born

● Desire to support SQL to kickstart wider adoption of Meteor
● Plan to create a DB agnostic layer that clients could talk to
● Meteor embraced the new open spec from Facebook: GraphQL
● Intention was to create tooling that would make Meteor incrementally adoptable
● Apollo Client and Server were born
● Initial excitement snowballed and both packages became runaway successes
● Before long the Apollo packages were more popular than Meteor itself

What is GraphQL?

What is GraphQL?
A query language for your APIs

● Invented at Facebook in 2012
● As a solution to too many service calls in their mobile app
● GraphQL replaced them all with a single request
● GraphQL is a query language for your API
● That helps you to build evolvable and client-focussed schemas

What is GraphQL?
An example query

query FavouriteProducts {
 viewer {
 id
 }
 favorites(orderBy: CREATEDAT_DESC) {
 products {
 name
 price
 reviews {
 rating
 }
 }
 }
}

What is GraphQL?
An example response

{
 "data": {
 "viewer": {
 "id": "12345"
 },
 "favorites": {
 "products": [{
 "name": "The Hitchhiker’s Guide to the Galaxy",
 "price": 42.42,
 "reviews": [{
 "rating": 5
 }]
 }]
 }
 }
}

USERS SERVICE

FAVORITES SERVICE

PRODUCTS SERVICE

PRICE SERVICE

REVIEWS SERVICE

What is GraphQL?
An example schema

type User {
 id: ID!
}

type Product {
 upc: String!
 reviews: [Review]
}

type Review {
 id: ID!
 rating: Int
 product: Product
}

type Query {
 favorites: [Product]
 viewer: User
}

What is GraphQL?
How resolvers work

const resolvers = {
 Product: {
 reviews(product, args, context, info) {
 return fetchReviewsForProduct(product.upc);
 }
 },
 Review: {
 product(review, args, context, info) {
 return fetchProductByUpc(review.productUpc);
 }
 },
 Query: {
 favorites(parent, args, context, info) {
 return fetchUserFavorites(context.userId);
 },
 viewer(parent, args, context, info) {
 return fetchUser(context.userId);
 }
 }
}

And thatʼs it!

The challenge of scale

The challenge of scale
Solving the challenge of creating a GraphQL API from many parts

● Explosion in open source offerings
● Initial work on tracing turned into a paid for SaaS: Apollo Optics
● Schema stitching was created as a way to combine GraphQL services
● Apollo Federation was launched in May 2019 as next generation solution to the problem
● Based on a model that more closely aligns with larger development teams

What do these companies have in common?

The Graph

Omni-channel
complexity

Cohesive experiences on
all devices, all platforms

Service
complexity

Cloud native & open
source are accelerating

service creation &
evolution

Competitive
pressure

Moats are falling while
delivery expectations

rise

creating a
complexity bottleneck

All these companies face unprecedented challenges
delivering great digital product fast

App teams spend ⅔ of their time on service integration
Customer experiences are inconsistent across channels

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB
Svc

Apps are exposed to full end-to-end complexity

API Gateways only address operational concerns. BFFs add duplication and complexity.
Teams are still tightly coupled, complexity still reigns.

API
Gateway

Svc

Svc

Svc Svc

Svc
Svc

Svc

Svc

Svc

Svc

Svc
Svc

Svc

Svc

Svc

Svc

Svc
Svc

BFF

BFF

BFF

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB
Svc

Past attempts to manage complexity have failed

Fragmented customer experiences
Customer experiences become fragmented

without expensive & time consuming alignment
and duplication of effort

Tech debt burden
Code is written, re-written, thrown away;

re-platforming is stifled. Sacrificing quality
for speed

Productivity killer
Dev teams waste ⅔ of their time on API integrations,

productivity declines every year, backlogs grow while
deadlines are shorter

Stifled innovation & frustration
Managing complexity leaves no time to deliver new,
differentiated experiences

Negative consequences of the complexity bottleneck

A growing number of companies are adopting GraphQL to solve their complexity bottleneck

And they are doing it strategically

SOURCE: STATE OF JS 2020

The good news: a solution exists

The Unified Graph connects frontend and backend developers without tightly coupling them

Apps & Devices

Unified Graph

Physical Network

Cloud Infrastructure

Data Management

Services & Business Logic

Value-creating applications

Business capabilities

A new and essential part of the modern tech strategy

An insulating layer for
service complexity

Decoupled from direct app requests,
service teams can focus on optimizing

capabilities and architecture w/out fear
of breaking changes

A query language
tailored for use

Apps pick what they need, from a
shared common contract, optimizing

performance and removing complexity
from each app

An API built for
building products

Freed from managing service
endpoints and orchestration, app devs

can focus on experiences not
integrations

Unified representation of
your services, data & digital

capabilities
Each capability is expressed as a

declarative abstract contract via a
schema

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB

Svc

Graph

Gr
ap

h
Ro

ut
er

Pricing

Favorites

Inventory

Product
Info User

Reviews

Cart

Share

The Graphʼs essential elements

Service teams bring their domain
expertise

Service teams are deeply involved during
initially schema design. Once defined they have
a safer, faster way to address app needs w/out

versioning and managing client migrations.

App teams bring their
usage expertise

App teams know best the shape of an “ideal”
API. Information Architects and Designers can be

key

Schema collaboration yields the
best abstraction “for now”

Teams propose and debate alternate ideas, using
schema best practices to capture the best balance

between app needs and service realities

The Graph drives upfront collaboration on product centric contracts
Iteration replaces perfectionism and versioned complexity

Graph

Gr
ap

h
Ro

ut
er

Pricing

Favorites

Inventory

Product
Info User

Reviews

Cart

Share

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB

Svc

The Graphʼs collaboration model

Service backlogs shorten,
more service innovation

Decoupled from managing direct app
requests, service teams move faster to
evolve and replatform services without

impact to clients

A more streamlined and
faster UX

Apps ask for just what they need, with
server-side orchestration optimizing

their performance

Product velocity and a
cohesive UX

Freed from service complexity, devs
deliver rich omnichannel customer

experiences in less time

A lasting home for all
product capabilities

Each underlying capability adds to the
whole, unlocking richer experiences,
new use cases and business models

Graph

Gr
ap

h
Ro

ut
er

Pricing

Favorites

Inventory

Product
Info User

Reviews

Cart

Share

The Graph becomes the single source of truth and point of collaboration for all teams
Ultimately the Graph becomes your product

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB

Svc

The impact of Graph

Apollo Federation

web app

iOS app

android app

Apollo Server

Resolvers
(customer code)

Apollo
Client

Apollo
Client

Apollo
Client

Service A

Service B

Service C

Apollo Server
A framework that lets you define a schema (what you

have) and connect it to underlying services
Apollo Client

A framework that lets you define queries (what you
want) and connect them to UI components

Before Federation: a single server

web app

iOS app

android app

Apollo GatewayApollo
Client

Apollo
Client

Apollo
Client

Service A

Service B

Service C

Service D

Service E

Apollo Server

Other Server

Resolvers
(customer code)

Resolvers
(customer code)

Composed graph
Query planning

Federated execution

Customer Cloud

Subgraphs
Multiple services implemented in Apollo Server or

similar frameworks that each implements one slice of a
unified schema

Apollo Gateway
Splits up a query and executes it against multiple

subgraphs

After Federation: single team → multiple teams

Apollo Federation introduces the concept of composability to your APIs

Composability across the stack

The Graph in action

The Graph in action
Native app product page example

Graph

Gr
ap

h
ro

ut
er Pricing

Favorites

Inventory

Product
Info User

Share

Reviews

Cart

Graph

Gr
ap

h
Ro

ut
er Pricing

Favorites

Inventory

Product
Info User

Share

Reviews

Cart

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB

Svc

The Graph in action
Desktop web product page example

Graph

Gr
ap

h
Ro

ut
er Pricing

Favorites

Inventory

Product
Info User

Share

Reviews

Cart

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB

Svc

The Graph in action
Wearable delivery confirmation app example

1 Flight Suit, small
In transit: Toronto, ON
Delivery by Tuesday

< Delivery notice

Gr
ap

h
ro

ut
er Pricing

Favorites

Maps

Product
Info User

Share

Reviews

Order

Graph

Gr
ap

h
Ro

ut
er Pricing

Favorites

Maps

Product
Info User

Share

Reviews

Order

Svc

Svc

Svc Svc

Svc
Svc

Svc

DB

Svc

Svc

Svc
Svc

Svc

Svc

Svc

DB

DB

Svc

The future

The future
The tools that enterprises need, the open source that developers need

● Apollo Federation 2 went GA in April 2022
● Contracts went GA in May 2022
● Graph Router went GA in May 2022
● Apollo Odyssey is looking to become the defaqto GraphQL learning resource
● Continued investment in our other open source offerings

Apollo Platform

The Apollo Platform adds air-traffic control

web app Service A

Service B

Service C

iOS app

android app

Apollo Graph Router Apollo Server

GraphQL Server

GraphQL Server

Customer Cloud

supergraph
schematraces

Apollo
Registry

Observability
Tools

Apollo Cloud

Launch
Control

ChangeLog
Dev Graphs

Tools
(Rover CLI, VS-Code Extensions, Browser Dev Tools)

Developer
Tools

Schema
Checks

Apollo Studio

Apollo
Client

Apollo
Client

Apollo
Client

Composed
Supergraph

Federated
Query Execution

Optimizing
Query Planner

Commercial SaaS

The Apollo Platform enables your unified graph strategy

Apollo
Studio

Apollo
Graph Router

GraphQL
Server

GraphQL
Server

GraphQL
ServerSubgraph C

GraphQL
Client

GraphQL
Client

GraphQL
Client

Apollo
Registry

Subgraph A

Subgraph B

activity
logs

schema
changes

Observability
Tools

Lifecycle
Reporting

Schema Checks

User Permissions

Change & Audit
Logs

OBSERVABLE GOVERNABLE SOURCE OF TRUTH

Decoupled

web app

iOS app

android app

SCALABLE

The Apollo Registry is your single source of truth

web app

Apollo
Graph Router

iOS app

android app

GraphQL
Server

GraphQL
Server

GraphQL
ServerSubgraph C

GraphQL
Client

GraphQL
Client

GraphQL
Client

Apollo
Studio

Apollo
Registry

Subgraph A

Subgraph B

activity
logs

schema
changes

The Apollo Registry is your single source of truth

web app

iOS app

android app

GraphQL
Server

GraphQL
Server

GraphQL
ServerSchema C

GraphQL
Client

GraphQL
Client

GraphQL
Client

Apollo
Studio

Apollo
Registry

Schema A

Schema B

activity
logs

schema
changes

Apollo
Graph Router

Observability
Tools

Lifecycle
Reporting

Observability yields insights

Understand how clients are consuming your graph Design time performance data

Collaboration without coupling
Your teams work together on a shared contract, not a specific endpoint or version

GraphQL
Client

GraphQL
Client

GraphQL
Client

web app

Apollo
Graph Router

iOS app

android app

GraphQL
Server

GraphQL
Server

GraphQL
ServerSchema C

Apollo
Studio

Apollo
Registry

Schema A

Schema B

activity
logs

schema
changes

Collaboration

Governable means speed with safety

web app

Apollo
Graph Router

iOS app

android app

GraphQL
Server

GraphQL
Server

GraphQL
ServerSchema C

GraphQL
Client

GraphQL
Client

GraphQL
Client

Apollo
Studio

Apollo
Registry

Schema A

Schema B

activity
logs

schema
changes

Schema Checks

User Permissions

Change & Audit
Logs

Governable means speed with safety
Schema checks ensure your teams find issues at development time

Thank You

Andy Roberts
Senior Manager - EMEA Customer Success

 @andyroberts_io andyrobertsio andyroberts.io

