Unsolved Problems in
Open Source Security

Rhys Arkins

Open Source Security: Navigating the Iceberg

Code you write

60-90% of deployed code is
Open Source

Open Source Code
you also ship

The Enemy Gets a Vote

Open Source vulnerability
disclosures are public and the
clock starts ticking right away

[MOSTLY SOLVED] ‘

Knowing What Open
Source You're Using

Dependency Maturity Levels

« Copy, Paste, Commit
* Manual shell/build scripts
« Package Manifests

* Lock Files

Languages & Lock Files

= Best:
= JavaScript (npm/Yarn/pnpm)
* Ruby (Bundler)
= PHP (Composer)
*= Go Modules

= Good:
= Python (Poetry, Pipenv)

= | ess Good:
= Java (Gradle, Maven)

@ WhiteSource

Open Source Detection

= Face value
= Look for package manifest files and lock files
= Parse them

= Forensic
= Run build scripts

* Fingerprint every file in build and post-build directory
= Compare fingerprints to known open source files

[MOSTLY SOLVED]

Be Alerted When Your
Open Source Has
Problems

.

. 8

Security Notifications

= Automation is essential

* The ideal system:
= Knows what you're using
= Knows what's vulnerable
= Correlates the two at all times

[MOSTLY SOLVED] ‘

Vulnerability
Remediation

Remediating Open Source Vulnerabilities

= Publicly disclosed vulnerabilities are 0
usually the most serious O
Percentage of NVD

= Most have a fix already available at
tlme Of pu bllcatlon vulnerabilities disclosed
with a fixed version

. . Iready existi
= Therefore, remediation has become SRR
iIncreasingly simple: upgrade

N %

Identity & Reputation

Important: Vulnerable vs Malicious Packages

* Vulnerabilities
= Accidents or oversights
* Hopefully not easily exploitable

= Malicious packages
= Like viruses or malware
= Intentionally do bad things, often immediately

13

Malicious Packages

= Bad from day one
= Typosquatting

= Good package turned bad
= Maintainer credentials get compromised, or
= New maintainer takes over with malicious intent, or

» Package creator was playing the long game and always intended to use it for
an exploit

Identity Concepts

= Who are you?

= Can you prove it?

Identity: Risk and Reward

= Package compromise rewards are mostly predictable:
= Stolen credentials

= The risks are quite variable
= Stolen credentials: little to lose except the credentials themselves
= Malicious maintainer: loss of account

= Therefore, focusing on 2FA is by far the low-hanging fruit

2FA Challenges

= Transitive dependencies

* Hundreds/thousands may be installed
= Only one needs to be compromised

= Publishing Automation

npm automation tokens

npm is introducing a new setting for access tokens to support publishing to the npm
registry from CI/CD workflows.

@ Read-only
A read-only token can download public or private packages from the npm registry.

O Automation
An automation token will bypass two-factor authentication when publishing. If you have
two-factor authentication enabled, you will not be prompted when using an automation
token, making it suitable for CI/CD workflows.

O Publish

A publish token can read and publish packages to the npm registry. If you have two-
factor authentication (2FA) enabled, it will be required when using this token.

17

Two-step Automation + 2FA

Google open-sources tool to boost 2FA
adoption in npm

Charlie Osborme 15 January 2020 at 11:27 UTC

(Authentication) (Secure Development) (Cyber-attacks)

Image: PortSwigger Ltd
Automation and security? You can have both!

Wombat Dressing Room

Google's npm registry proxy. Designed to reduce the attack surface of npm packages.

vulnerabilities ' 0 || code style google

What it does

» You publish to Wombat Dressing Room, and it enforces additional security rules, before redirecting to
registry.npmjs.org.

» Publishes are made from a single npm account with 2FA enabled (a bot account).

» Publishes can be made using the npm CLI, by making Wombat Dressing Room the default registry (npm config
set registry https://external-project.appspot.com).

One to
watch:
sigstore

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Introducing sigstore: Easy Code Signing & Verification for

Supply Chain Integrity
March 9, 2021

Posted by Kim Lewandowski & Dan Lorenc, Google Open Source Security Team

One of the fundamental security issues with open source is that it's difficult to know
where the software comes from or how it was built, making it susceptible to supply
chain attacks. A few recent examples of this include dependency confusion attack and

malicious RubyGems package to steal cryptocurrency.

Today we welcome the announcement of sigstore, a new project in the Linux
Foundation that aims to solve this issue by improving software supply chain integrity

and verification.

19

N %

Malicious Maintainers

Malicious Package Creators

= Develop package with intent to compromise it once it's popular
= High skill required
= Long term planning

the npm blog “ p ITI

Blog about npm things.

Plot to steal cryptocurrency foiled by the npm security
team

Yesterday, the npm, Inc. security team, in collaboration with Komodo, helped protect over $13 million
USD in cryptocurrency assets as we found and responded to a malware threat targeting the users of a

cryptocurrency wallet called Agama.

This attack focused on getting a malicious package into the build chain for Agama and stealing the
wallet seeds and other login passphrases used within the application.

@ WhiteSource

21

Malicious Package Maintainers

= Contribute to an existing, ideally unmaintained package
* Get added as a maintainer
= Exploit the package

the npm blog n p BT} etk

Blog about npm things. This attack started out as a social engineering attack. The attacker, posing as a maintainer, took over
maintainership of the event—-stream module.

Details about the event-stream incident

This is an analysis of the event-stream incident of which many of you became aware earlier this week.
npm acts immediately to address operational concerns and issues that affect the safety of our
community, but we typically perform more thorough analysis before discussing incidents—we know
you’ve been waiting.

On the morning of November 26th, npm’s security team was notified of a malicious package that had
made its way into event-stream, a popular npm package. After triaging the malware, npm Security
responded by removing flatmap-stream and event-stream@3. 3.6 from the Registry and taking
ownership of the event—-stream package to prevent further abuse.

@ WhiteSource

22

Security Multipliers

= Why can packages do so much harm once they're
installed?

= Why are such exploits hard to detect?

= Why do exploits propagate so fast?

23

(oo | %

Sandboxing Permissions

Open Source Packages Should Have Less Permissions

= Language-dependent, packages can essentially exploit
immediately after either:

* They are loaded, or
= They are installed

= Very few packages need the ability to read from the file system or
environment, or to connect to outside servers, yet that's exactly

how every exploit so far has worked

Example: Operating System Malware

= OS malware is much less of a problem today than before
= The answer was not: getting better at detecting bad apps

= The answer was: zero trust and sandboxing
= Apps by default get only permissions which are safe
= Any further permissions need explicit approval
= The OS stops them from accessing things they are not approved for

Deno: Secure by Default

Modules and apps need to explicitly declare and be granted
permissions.

import { serve } from "https://deno.land/std@@.50.0/http/server.ts";

for await (const req of serve({ port: 8000 })) {
req.respond({ body: "Hello World\n" });
}

: Uncaught PermissionDenied: network access to "0.0.0.0:8000",
run again with the --allow-net flag

LavaMoat

One to
watch:
Lavamoat

LavaMoat is a set of tools for securing JavaScript projects against a category of attacks called software supply
chain attacks.

28

N %

Detecting Malicious
Updates

Why Malicious Updates Are Missed

= Too much to review
= Too hard to review
= You can’t be sure of what you're reviewing anyway

30

Open Source: Too Much To Review
= The majority of software projects do not have the resources to
carefully review every line of open source code they use

* Yet, the industry seems driven by the assumption that surely
someone has looked at it

= "Given enough eyeballs, all bugs are shallow”
= But are the eyeballs even looking at it?

Open Source Updates: Inconvenient To Review

= Source control platforms are designed for reviewing your code, not
someone else’s you imported

= A Pull Request may be a single line diff: 1.0.0 to 1.1.0

*= Reviewing the code that changed typically requires going into some
other system

= No major open source registry supports native “diff” of packages

= Many languages registries contain “built” code
= JAR files

= Babel-compiled JS

@ WhiteSource

The Source May Not Be The Real Source
= Faced with the challenge of diffing post-compiled code, you may try
to seek out “the source”
= Good news: most of it is on GitHub

= Bad news: malicious maintainers aren’t going to put the malicious
part on GitHub anyway

= With the exception of Docker Hub autobuild, no major registry
enforces/verifies the link between source and artifact

Reproducible Builds

= Ensuring the verifiability of
source code is a big missing link
in Open Source security

= |t doesn’t really require extra
work

= |t greatly decreases security
risks for all involved, including
Open Source developers

ini Reproducible
“a¢’ Builds

Reproducible builds are a set of software development practices that create an independently-
verifiable path from source to binary code. (more)

34

One to watch: WhiteSource Diffend

rest-client 1.6.9 - 1.6.13

Inspect Changes in Packages
Before They Are Allowed

WhiteSource Diffend allows you to inspect dependencies and:

v Intelligently suggests which updates require review by your team members

+~) Automatically notifies you during installation attempts about the need for a

manual review

~) Enforces policies when un-reviewed package updates aren't allowed

See It in Action

(rest-client 1.6.9 vs malicious 1.6.13)

35

[UNDECIDED] ‘

Decentralized vs
Centralized Registries

v

All things equal, Decentralized makes Security Worse

= Whenever a malicious package is discovered, the first instinct is:
= “‘Why didn’t the registry detect this, and how long did it take them to remove
it?”

= Centralized blocking or revoking of packages can’'t be done
immediately if there’s nobody in control

= Direct git-based dependencies have some advantages
= Source is verifiable, while most hosts will take down malicious code

(oo | %

Malicious Package
Propagation

Why Does Malicious Code Propagate So Fast?

= One word: SemVer
= All X.Y.Z releases with same X should be compatible

= The majority of package managers (npm, Bundler, Maven, etc) take
an optimistic approach to version ranges
= |f given the opportunity, they will install the latest compatible version

= Lock files help, but they are frequently unlocked,
at which time in-range versions can be
implicitly “upgraded”

@ WhiteSource

SemVer Range Example

= Your code dependsonred v1.0.0

" red dependsonblue 2.X
= blue dependsonorange 3.x

= Without changing your dependencies, a new/malicious version of
orange could be installed

= Any new project you start that uses red@1.0.0 will also
get the malicious orange

40

Uncapped Version Ranges Are An Antipattern

= Uncapped = any new version within the range is compatible and
you should use it

= Alternatives:
= Cap versionranges e.g. instead of 1. x use >=1.0.0 <=1.4.0
= Change the algorithm completely: Minimal Version Selection

41

Go Modules and Minimal Version Selection

= |t still relies on SemVer concepts

= No need to declare ranges, because we know compatibility with
“1.0.0" should also mean compatibility with any 1.x

= Don’t use any newer version than you need to

* Installed versions correspond with the minimum compatible version,
not the latest compatible version

= Now, any new malicious release is never propagated
automatically

Version Selection: The Way Forward

= Use capped ranges, bump them regularly
= Achievable using automation tools but “noisy” from a project point of view

= Use minimal version selection, bump when necessary
= No more “automatic bug fixes” thanks to semver
= Import bug fixes require bumping of minimum version

L)
5 w
SV.
4 (O
£
S <
>
>

1. Better Open Source Publishing Protection

= Single factor authentication is unacceptable

= Registries should ideally allow enforcing of 2FA for publishing
= Consumers can elect to use dependencies with enforced 2FA only

= Needs:

* Registry hosts support
= Consumer pressure

2. Verifiable Source Code using Reproducible Builds

= There’s no point reviewing for malicious code if we're scanning the
wrong code to begin with

= Non-reproducible builds should be a code smell, like lack of 2FA

* Needs:
* Industry support for tooling
= Adoption of reproducibility mindset

3. Open Source Dependencies Should Be Sandboxed

* Today's approach to malicious open source packages can be
compared to Windows 95 pre-malware tsunami

= Unfortunately, no relief in sight from language ecosystems

* Needs:
= Large rearchitecting of language package imports

4. Package Managers Implement Minimal Selection

* |[t's madness that a malicious package release can be installed
“accidentally” seconds after it's published, without anybody
reviewing it

= Minimal Version Selection should be a configurable option for
package ecosystems

= Needs:

= Package Manager support
= Awareness

@ WhiteSource

=
&
S
4
=
4\
=
—

Rhys Arkins
@rarkins

