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60-90% of deployed code is 
Open Source
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Open Source Security: Navigating the Iceberg

Open Source Code
you also ship

Code you write



Open Source vulnerability 
disclosures are public and the 
clock starts ticking right away
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The Enemy Gets a Vote
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Knowing What Open 
Source You’re Using



• Copy, Paste, Commit

• Manual shell/build scripts

• Package Manifests

• Lock Files
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Dependency Maturity Levels



§ Best:
§ JavaScript (npm/Yarn/pnpm)
§ Ruby (Bundler)
§ PHP (Composer)
§ Go Modules

§ Good:
§ Python (Poetry, Pipenv)

§ Less Good:
§ Java (Gradle, Maven)
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Languages & Lock Files



§ Face value
§ Look for package manifest files and lock files
§ Parse them

§ Forensic
§ Run build scripts
§ Fingerprint every file in build and post-build directory
§ Compare fingerprints to known open source files
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Open Source Detection
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Be Alerted When Your 
Open Source Has 
Problems



§ Automation is essential

§ The ideal system:
§ Knows what you’re using
§ Knows what’s vulnerable
§ Correlates the two at all times
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Security Notifications
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Vulnerability 
Remediation



§ Publicly disclosed vulnerabilities are 
usually the most serious

§ Most have a fix already available at 
time of publication

§ Therefore, remediation has become 
increasingly simple: upgrade
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Remediating Open Source Vulnerabilities

85%
Percentage of NVD 

vulnerabilities disclosed 
with a fixed version 

already existing
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Identity & Reputation



§ Vulnerabilities
§ Accidents or oversights
§ Hopefully not easily exploitable

§ Malicious packages
§ Like viruses or malware
§ Intentionally do bad things, often immediately
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Important: Vulnerable vs Malicious Packages



§ Bad from day one
§ Typosquatting

§ Good package turned bad
§ Maintainer credentials get compromised, or
§ New maintainer takes over with malicious intent, or
§ Package creator was playing the long game and always intended to use it for 

an exploit
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Malicious Packages



§ Who are you?

§ Can you prove it?
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Identity Concepts



§ Package compromise rewards are mostly predictable:
§ Stolen credentials

§ The risks are quite variable
§ Stolen credentials: little to lose except the credentials themselves
§ Malicious maintainer: loss of account

§ Therefore, focusing on 2FA is by far the low-hanging fruit
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Identity: Risk and Reward



§ Transitive dependencies
§ Hundreds/thousands may be installed
§ Only one needs to be compromised

§ Publishing Automation
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2FA Challenges
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Two-step Automation + 2FA



One to 
watch: 
sigstore
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Malicious Maintainers



§ Develop package with intent to compromise it once it’s popular
§ High skill required
§ Long term planning
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Malicious Package Creators



§ Contribute to an existing, ideally unmaintained package
§ Get added as a maintainer
§ Exploit the package
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Malicious Package Maintainers
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§ Why can packages do so much harm once they’re 
installed?

§ Why are such exploits hard to detect?

§ Why do exploits propagate so fast?

Security Multipliers
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Sandboxing Permissions



§ Language-dependent, packages can essentially exploit 
immediately after either:
§ They are loaded, or
§ They are installed

§ Very few packages need the ability to read from the file system or 
environment, or to connect to outside servers, yet that’s exactly 
how every exploit so far has worked
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Open Source Packages Should Have Less Permissions



§ OS malware is much less of a problem today than before
§ The answer was not: getting better at detecting bad apps

§ The answer was: zero trust and sandboxing
§ Apps by default get only permissions which are safe
§ Any further permissions need explicit approval
§ The OS stops them from accessing things they are not approved for
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Example: Operating System Malware



Modules and apps need to explicitly declare and be granted 
permissions.
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Deno: Secure by Default



One to 
watch: 
Lavamoat
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Detecting Malicious 
Updates



§ Too much to review
§ Too hard to review
§ You can’t be sure of what you’re reviewing anyway
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Why Malicious Updates Are Missed



§ The majority of software projects do not have the resources to 
carefully review every line of open source code they use

§ Yet, the industry seems driven by the assumption that surely 
someone has looked at it

§ ”Given enough eyeballs, all bugs are shallow”
§ But are the eyeballs even looking at it?
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Open Source: Too Much To Review



§ Source control platforms are designed for reviewing your code, not 
someone else’s you imported
§ A Pull Request may be a single line diff: 1.0.0 to 1.1.0

§ Reviewing the code that changed typically requires going into some 
other system

§ No major open source registry supports native “diff” of packages
§ Many languages registries contain “built” code

§ JAR files
§ Babel-compiled JS
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Open Source Updates: Inconvenient To Review



§ Faced with the challenge of diffing post-compiled code, you may try 
to seek out “the source”

§ Good news: most of it is on GitHub
§ Bad news: malicious maintainers aren’t going to put the malicious 

part on GitHub anyway
§ With the exception of Docker Hub autobuild, no major registry 

enforces/verifies the link between source and artifact
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The Source May Not Be The Real Source



§ Ensuring the verifiability of 
source code is a big missing link 
in Open Source security

§ It doesn’t really require extra 
work

§ It greatly decreases security 
risks for all involved, including 
Open Source developers
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Reproducible Builds



One to watch: WhiteSource Diffend
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Decentralized vs 
Centralized Registries



§ Whenever a malicious package is discovered, the first instinct is:
§ “Why didn’t the registry detect this, and how long did it take them to remove 

it?”

§ Centralized blocking or revoking of packages can’t be done 
immediately if there’s nobody in control

§ Direct git-based dependencies have some advantages
§ Source is verifiable, while most hosts will take down malicious code
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All things equal, Decentralized makes Security Worse
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Malicious Package 
Propagation



§ One word: SemVer
§ All X.Y.Z releases with same X should be compatible

§ The majority of package managers (npm, Bundler, Maven, etc) take 
an optimistic approach to version ranges
§ If given the opportunity, they will install the latest compatible version

§ Lock files help, but they are frequently unlocked, 
at which time in-range versions can be 
implicitly “upgraded”
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Why Does Malicious Code Propagate So Fast?



§ Your code depends on red v1.0.0
§ red depends on blue 2.x

§ blue depends on orange 3.x

§ Without changing your dependencies, a new/malicious version of 
orange could be installed

§ Any new project you start that uses red@1.0.0 will also
get the malicious orange
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SemVer Range Example



§ Uncapped = any new version within the range is compatible and 
you should use it

§ Alternatives:
§ Cap version ranges e.g. instead of 1.x use >=1.0.0 <=1.4.0
§ Change the algorithm completely: Minimal Version Selection
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Uncapped Version Ranges Are An Antipattern



§ It still relies on SemVer concepts
§ No need to declare ranges, because we know compatibility with 

“1.0.0” should also mean compatibility with any 1.x
§ Don’t use any newer version than you need to
§ Installed versions correspond with the minimum compatible version, 

not the latest compatible version
§ Now, any new malicious release is never propagated

automatically
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Go Modules and Minimal Version Selection



§ Use capped ranges, bump them regularly
§ Achievable using automation tools but “noisy” from a project point of view

§ Use minimal version selection, bump when necessary
§ No more “automatic bug fixes” thanks to semver
§ Import bug fixes require bumping of minimum version
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Version Selection: The Way Forward
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Key Points and 
Take-Aways



§ Single factor authentication is unacceptable
§ Registries should ideally allow enforcing of 2FA for publishing
§ Consumers can elect to use dependencies with enforced 2FA only

§ Needs:
§ Registry hosts support
§ Consumer pressure
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1. Better Open Source Publishing Protection



§ There’s no point reviewing for malicious code if we’re scanning the 
wrong code to begin with

§ Non-reproducible builds should be a code smell, like lack of 2FA

§ Needs:
§ Industry support for tooling
§ Adoption of reproducibility mindset
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2. Verifiable Source Code using Reproducible Builds



§ Today’s approach to malicious open source packages can be 
compared to Windows 95 pre-malware tsunami

§ Unfortunately, no relief in sight from language ecosystems

§ Needs:
§ Large rearchitecting of language package imports
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3. Open Source Dependencies Should Be Sandboxed



§ It’s madness that a malicious package release can be installed 
“accidentally” seconds after it’s published, without anybody 
reviewing it

§ Minimal Version Selection should be a configurable option for 
package ecosystems

§ Needs:
§ Package Manager support
§ Awareness
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4. Package Managers Implement Minimal Selection



Thank You!
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