
Unsolved Problems in 
Open Source Security

1

Rhys Arkins



60-90% of deployed code is 
Open Source

2

Open Source Security: Navigating the Iceberg

Open Source Code
you also ship

Code you write



Open Source vulnerability 
disclosures are public and the 
clock starts ticking right away

3

The Enemy Gets a Vote



4

Knowing What Open 
Source You’re Using



• Copy, Paste, Commit

• Manual shell/build scripts

• Package Manifests

• Lock Files

5

Dependency Maturity Levels



§ Best:
§ JavaScript (npm/Yarn/pnpm)
§ Ruby (Bundler)
§ PHP (Composer)
§ Go Modules

§ Good:
§ Python (Poetry, Pipenv)

§ Less Good:
§ Java (Gradle, Maven)

6

Languages & Lock Files



§ Face value
§ Look for package manifest files and lock files
§ Parse them

§ Forensic
§ Run build scripts
§ Fingerprint every file in build and post-build directory
§ Compare fingerprints to known open source files

7

Open Source Detection



8

Be Alerted When Your 
Open Source Has 
Problems



§ Automation is essential

§ The ideal system:
§ Knows what you’re using
§ Knows what’s vulnerable
§ Correlates the two at all times

9

Security Notifications



10

Vulnerability 
Remediation



§ Publicly disclosed vulnerabilities are 
usually the most serious

§ Most have a fix already available at 
time of publication

§ Therefore, remediation has become 
increasingly simple: upgrade

11

Remediating Open Source Vulnerabilities

85%
Percentage of NVD 

vulnerabilities disclosed 
with a fixed version 

already existing



12

Identity & Reputation



§ Vulnerabilities
§ Accidents or oversights
§ Hopefully not easily exploitable

§ Malicious packages
§ Like viruses or malware
§ Intentionally do bad things, often immediately

13

Important: Vulnerable vs Malicious Packages



§ Bad from day one
§ Typosquatting

§ Good package turned bad
§ Maintainer credentials get compromised, or
§ New maintainer takes over with malicious intent, or
§ Package creator was playing the long game and always intended to use it for 

an exploit

14

Malicious Packages



§ Who are you?

§ Can you prove it?

15

Identity Concepts



§ Package compromise rewards are mostly predictable:
§ Stolen credentials

§ The risks are quite variable
§ Stolen credentials: little to lose except the credentials themselves
§ Malicious maintainer: loss of account

§ Therefore, focusing on 2FA is by far the low-hanging fruit

16

Identity: Risk and Reward



§ Transitive dependencies
§ Hundreds/thousands may be installed
§ Only one needs to be compromised

§ Publishing Automation

17

2FA Challenges



18

Two-step Automation + 2FA



One to 
watch: 
sigstore

19



20

Malicious Maintainers



§ Develop package with intent to compromise it once it’s popular
§ High skill required
§ Long term planning

21

Malicious Package Creators



§ Contribute to an existing, ideally unmaintained package
§ Get added as a maintainer
§ Exploit the package

22

Malicious Package Maintainers



23

§ Why can packages do so much harm once they’re 
installed?

§ Why are such exploits hard to detect?

§ Why do exploits propagate so fast?

Security Multipliers



24

Sandboxing Permissions



§ Language-dependent, packages can essentially exploit 
immediately after either:
§ They are loaded, or
§ They are installed

§ Very few packages need the ability to read from the file system or 
environment, or to connect to outside servers, yet that’s exactly 
how every exploit so far has worked

25

Open Source Packages Should Have Less Permissions



§ OS malware is much less of a problem today than before
§ The answer was not: getting better at detecting bad apps

§ The answer was: zero trust and sandboxing
§ Apps by default get only permissions which are safe
§ Any further permissions need explicit approval
§ The OS stops them from accessing things they are not approved for

26

Example: Operating System Malware



Modules and apps need to explicitly declare and be granted 
permissions.

27

Deno: Secure by Default



One to 
watch: 
Lavamoat

28



29

Detecting Malicious 
Updates



§ Too much to review
§ Too hard to review
§ You can’t be sure of what you’re reviewing anyway

30

Why Malicious Updates Are Missed



§ The majority of software projects do not have the resources to 
carefully review every line of open source code they use

§ Yet, the industry seems driven by the assumption that surely 
someone has looked at it

§ ”Given enough eyeballs, all bugs are shallow”
§ But are the eyeballs even looking at it?

31

Open Source: Too Much To Review



§ Source control platforms are designed for reviewing your code, not 
someone else’s you imported
§ A Pull Request may be a single line diff: 1.0.0 to 1.1.0

§ Reviewing the code that changed typically requires going into some 
other system

§ No major open source registry supports native “diff” of packages
§ Many languages registries contain “built” code

§ JAR files
§ Babel-compiled JS

32

Open Source Updates: Inconvenient To Review



§ Faced with the challenge of diffing post-compiled code, you may try 
to seek out “the source”

§ Good news: most of it is on GitHub
§ Bad news: malicious maintainers aren’t going to put the malicious 

part on GitHub anyway
§ With the exception of Docker Hub autobuild, no major registry 

enforces/verifies the link between source and artifact

33

The Source May Not Be The Real Source



§ Ensuring the verifiability of 
source code is a big missing link 
in Open Source security

§ It doesn’t really require extra 
work

§ It greatly decreases security 
risks for all involved, including 
Open Source developers

34

Reproducible Builds



One to watch: WhiteSource Diffend

35



36

Decentralized vs 
Centralized Registries



§ Whenever a malicious package is discovered, the first instinct is:
§ “Why didn’t the registry detect this, and how long did it take them to remove 

it?”

§ Centralized blocking or revoking of packages can’t be done 
immediately if there’s nobody in control

§ Direct git-based dependencies have some advantages
§ Source is verifiable, while most hosts will take down malicious code

37

All things equal, Decentralized makes Security Worse



38

Malicious Package 
Propagation



§ One word: SemVer
§ All X.Y.Z releases with same X should be compatible

§ The majority of package managers (npm, Bundler, Maven, etc) take 
an optimistic approach to version ranges
§ If given the opportunity, they will install the latest compatible version

§ Lock files help, but they are frequently unlocked, 
at which time in-range versions can be 
implicitly “upgraded”

39

Why Does Malicious Code Propagate So Fast?



§ Your code depends on red v1.0.0
§ red depends on blue 2.x

§ blue depends on orange 3.x

§ Without changing your dependencies, a new/malicious version of 
orange could be installed

§ Any new project you start that uses red@1.0.0 will also
get the malicious orange

40

SemVer Range Example



§ Uncapped = any new version within the range is compatible and 
you should use it

§ Alternatives:
§ Cap version ranges e.g. instead of 1.x use >=1.0.0 <=1.4.0
§ Change the algorithm completely: Minimal Version Selection

41

Uncapped Version Ranges Are An Antipattern



§ It still relies on SemVer concepts
§ No need to declare ranges, because we know compatibility with 

“1.0.0” should also mean compatibility with any 1.x
§ Don’t use any newer version than you need to
§ Installed versions correspond with the minimum compatible version, 

not the latest compatible version
§ Now, any new malicious release is never propagated

automatically

42

Go Modules and Minimal Version Selection



§ Use capped ranges, bump them regularly
§ Achievable using automation tools but “noisy” from a project point of view

§ Use minimal version selection, bump when necessary
§ No more “automatic bug fixes” thanks to semver
§ Import bug fixes require bumping of minimum version

43

Version Selection: The Way Forward



44

Key Points and 
Take-Aways



§ Single factor authentication is unacceptable
§ Registries should ideally allow enforcing of 2FA for publishing
§ Consumers can elect to use dependencies with enforced 2FA only

§ Needs:
§ Registry hosts support
§ Consumer pressure

45

1. Better Open Source Publishing Protection



§ There’s no point reviewing for malicious code if we’re scanning the 
wrong code to begin with

§ Non-reproducible builds should be a code smell, like lack of 2FA

§ Needs:
§ Industry support for tooling
§ Adoption of reproducibility mindset

46

2. Verifiable Source Code using Reproducible Builds



§ Today’s approach to malicious open source packages can be 
compared to Windows 95 pre-malware tsunami

§ Unfortunately, no relief in sight from language ecosystems

§ Needs:
§ Large rearchitecting of language package imports

47

3. Open Source Dependencies Should Be Sandboxed



§ It’s madness that a malicious package release can be installed 
“accidentally” seconds after it’s published, without anybody 
reviewing it

§ Minimal Version Selection should be a configurable option for 
package ecosystems

§ Needs:
§ Package Manager support
§ Awareness

48

4. Package Managers Implement Minimal Selection



Thank You!

49

Rhys Arkins
@rarkins


